Navigation Links
Inspired by deep sea sponges: Creating flexible minerals

Scientists at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research (MPI-P) in Germany have created a new synthetic hybrid material with a mineral content of almost 90 percent, yet extremely flexible. They imitated the structural elements found in most sea sponges and recreated the sponge spicules using the natural mineral calcium carbonate and a protein of the sponge. Natural minerals are usually very hard and prickly, as fragile as porcelain. Amazingly, the synthetic spicules are superior to their natural counterparts in terms of flexibility, exhibiting a rubber-like flexibility. The synthetic spicules can, for example, easily be U-shaped without breaking or showing any signs of fracture This highly unusual characteristic, described by the German researchers in the current issue of Science, is mainly due to the part of organic substances in the new hybrid material. It is about ten times as much as in natural spicules.

Spicules are structural elements found in most sea sponges. They provide structural support and deter predators. They are very hard, prickly, and even quite difficult to cut with a knife. The spicules of sponges thus offer a perfect example of a lightweight, tough, and impenetrable defense system, which may inspire engineers to create body armors of the future.

The researchers led by Wolfgang Tremel, Professor at Johannes Gutenberg University Mainz, and Hans-Jrgen Butt, Director at the Max Planck Institute for Polymer Research in Mainz, used these natural sponge spicules as a model to cultivate them in the lab. The synthetic spicules were made from calcite (CaCO3) and silicatein-α. The latter is a protein from siliceous sponges that, in nature, catalyzes the formation of silica, which forms the natural silica spicules of sponges. Silicatein-α was used in the lab setting to control the self-organization of the calcite spicules. The synthetic material was self-assembled from an amorphous calcium carbonate intermediate and silicatein and subsequently aged to the final crystalline material. After six months, the synthetic spicules consisted of calcite nanocrystals aligned in a brick wall fashion with the protein embedded like cement in the boundaries between the calcite nanocrystals. The spicules were of 10 to 300 micrometers in length with a diameter of 5 to 10 micrometers.

As the scientists, among them chemists, polymer researchers, and the molecular biologist Professor Werner E. G. Mller from the Mainz University Medical Center, also write in their Science publication, the synthetic spicules have yet another special characteristic, i.e., they are able to transmit light waves even when they are bent.


Contact: Wolfgang Tremel
Johannes Gutenberg Universitaet Mainz

Related biology news :

1. The worlds most sensitive plasmon resonance sensor inspired by ancient Roman cup
2. Bioinspired fibers change color when stretched
3. University of Tennessee engineering professor looks to whirligig beetle for bio-inspired robots
4. Inspired: Canada funds 68 bold, inventive ways to improve health, save lives in developing countries
5. Recreating natural complex gene regulation
6. New method for creating long-lived stem cells used for bone replacement
7. Creating a future of personalized medicine: U-M forms joint venture for DNA diagnostics
8. Gecko feet hold clues to creating bandages that stick when wet
9. Creating energy from light and air - new research on biofuel cells
10. Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it
11. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
Post Your Comments:
(Date:11/18/2015)... ALBANY, New York , November 18, 2015 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2021. According to ... bn in 2014 and is anticipated to reach US$29.1 ... 2015 to 2021. North America ...
(Date:11/17/2015)... LIVERMORE, Calif. , Nov. 17, 2015  Vigilant ... has joined its Board of Directors. ... Vigilant,s Board after recently retiring from the partnership at ... owning 107 companies with over $140 Billion in revenue.  ... performance improvement across all the TPG companies, from 1997 ...
(Date:11/12/2015)... 2015  A golden retriever that stayed healthy despite ... has provided a new lead for treating this muscle-wasting ... Institute of MIT and Harvard and the University of ... Cell, pinpoints a protective gene that ... effects. The Boston Children,s lab of Lou Kunkel ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... 1, 2015 Frost & Sullivan is ... program addresses ways companies can innovate and transform ... --> ... --> ... well as the disrupting factors altering the industry, ...
(Date:12/1/2015)... DUBLIN , Dec. 01, 2015 /PRNewswire/ ... announced the addition of the "2016 ... Sales Forecasts, Innovative Technologies, Competitive Strategies, Opportunities ... report to their offering. --> ... the "2016 Europe Cell Surface Markers: ...
(Date:12/1/2015)... , ... December 01, 2015 , ... ... announces that its best selling system laboratory animal colony management software solution, ezColony®, ... without investing in on-site IT resources., , Many organizations ...
(Date:12/1/2015)... SUNNYVALE, Calif. , Dec. 1, 2015 ... part of its participation at the Piper Jaffray Healthcare ... later this morning, the Company is reaffirming its outlook ... guidance for 2016, in addition to discussing longer term ... Chairman and Chief Executive Officer.  "We continue to be ...
Breaking Biology Technology: