Navigation Links
Insight into DNA reprogramming during egg and sperm cell development

Scientists at the Babraham Institute have gained a new understanding of when and how the DNA in developing egg and sperm cells is 'reset', in preparation for making a new embryo. It is well known that small chemical groups can be added to DNA to alter gene activity, these modifications to the DNA are acquired during development in the womb and throughout adult life and can arise from changes in environment. Most of these modifications are removed in immature egg and sperm cells to 'reset' the DNA and to erase any 'environmental memory', but some remain. Decoding this reprogramming has major implications for our understanding of development and how these modifications can be inherited from one generation to another.

All the cells in the body of one individual have the same DNA sequence (genome) and it is how the DNA sequence is interpreted that results in the formation of different cell types, for example different genes can be switched on and off. Inactive genes often have a small chemical modification, called a methyl group, added to them outside the coding sequence which promotes this regulation. This study, published today (6 December) in the journal Molecular Cell, is the first genome-wide study to look at what happens to the methyl groups during early stages of egg and sperm cell (primordial germ cell) development. This type of research, investigating modifications to the DNA which do not alter the underlying DNA sequence, is called epigenetics.

Dr Stefanie Seisenberger, lead author from the Babraham Institute, which receives strategic funding from the Biotechnology and Biological Sciences Research Council (BBSRC), explained, "We produced a high resolution map showing the location and timing of methyl group removal from primordial germ cell DNA. We discovered that the majority of demethylation occurred much earlier than people previously thought and this has allowed us to shed light on the process of methyl group removal in mammals, a mechanism which has remained elusive for many years. An even more exciting finding is that we have identified regions of DNA that avoid demethylation and are therefore candidates for how environmental information can be transferred from parent to offspring. Interestingly, one of these areas has a link with type 2 diabetes."

Professor Wolf Reik, senior author of the paper, a Group Leader at the Babraham Institute and an associate faculty member at the Wellcome Trust Sanger Institute, added, "Several recent studies in other laboratories have confirmed that environmental information can be transferred from parent to offspring in mammals, for example mice fed a high-fat diet produce offspring with altered metabolic regulation, but it is not known how this occurs. One interesting observation from our study, which backs up work performed elsewhere, is that incomplete removal of methyl groups from DNA occurs more frequently in sperm than egg forming cells, suggesting that fathers have a bigger part to play in epigenetic inheritance than previously thought. This has implications not only for understanding mechanisms of inheritance and development but also our susceptibility to obesity and diseases like diabetes."

Contact: Dr Anja Drozd
Biotechnology and Biological Sciences Research Council

Related biology news :

1. New insights into cloud formation
2. Research on flavanols and procyanidins provides new insights into how these phytonutrients may positively impact human health
3. New insight into mechanisms behind autoimmune diseases suggests a potential therapy
4. Discovery offers insight into treating viral stomach flu
5. Fine-scale analysis of the human brain yields insight into its distinctive composition
6. Chimpanzee ground nests offer new insight into our ancestors descent from the trees
7. Battle of the sexes offers evolutionary insights
8. Analysis of speed of Greenland glaciers gives new insight for rising sea level
9. Mice with big brains provide insight into brain regeneration and developmental disorders
10. Maps of Miscanthus genome offer insight into grass evolution
11. Songbirds learning hub in brain offers insight into motor control
Post Your Comments:
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at . ...
(Date:4/13/2017)... , April 13, 2017 According to a ... Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment ... the IAM Market is expected to grow from USD 14.30 Billion in ... Rate (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... pharmaceutical and biotechnology industries to improve patient outcomes and quality of life, will ... analytical testing are being attributed to new regulatory requirements for all new drug ...
(Date:10/11/2017)... ... , ... ComplianceOnline’s Medical Device Summit is back for its 4th year. The ... Francisco, CA. The Summit brings together current and former FDA office bearers, regulators, industry ... officials from around the world to address key issues in device compliance, quality and ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... and pregnancy rates in frozen and fresh in vitro fertilization (IVF) ... maternal age to IVF success. , After comparing the results from the fresh ...
(Date:10/10/2017)... , ... October 10, 2017 , ... Dr. Bob Harman, ... his local San Diego Rotary Club. The event entitled “Stem Cells ... and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human ...
Breaking Biology Technology: