Navigation Links
Insects take a bigger bite out of plants in a higher CO2 world
Date:3/24/2008

Atmospheric carbon dioxide levels are rising at an alarming rate, and new research indicates that soybean plant defenses go down as CO2 goes up. Elevated CO2 impairs a key component of the plants defenses against leaf-eating insects, according to the report.

The University of Illinois study appears this week online in the Proceedings of the National Academy of Sciences.

Deforestation and the burning of fossil fuels have significantly increased carbon dioxide levels since the late 18th century, said plant biology professor and department head Evan DeLucia, an author of the study.

Currently, CO2 in the atmosphere is about 380 parts per million, DeLucia said. At the beginning of the Industrial Revolution it was 280 parts per million, and it had been there for at least 600,000 years probably several million years before that.

Current predictions are that atmospheric carbon dioxide will reach 550 parts per million by the year 2050, DeLucia said, and the rapid industrialization of India and China may even accelerate that timetable.

The new study, led by entomology professor and department head May Berenbaum, used the Soybean Free Air Concentration Enrichment (Soy FACE) facility at Illinois. This open-air research lab can expose the plants in a soybean field to a variety of atmospheric CO2 and ozone levels without isolating the plants from other environmental influences, such as rainfall, sunlight and insects.

High atmospheric carbon dioxide is known to accelerate the rate of photosynthesis. It also increases the proportion of carbohydrates relative to nitrogen in plant leaves.

The researchers wanted to know how this altered carbon-to-nitrogen ratio affected the insects that fed on the plants. They predicted the insects would eat more leaves to meet their nitrogen needs.

When they exposed the soybean field to elevated carbon dioxide levels, the researchers saw the expected effect: Soybeans in the test plot exhibited more signs of insect damage than those in nearby plots. A closer inspection showed that soybeans grown at elevated CO2 levels attracted many more adult Japanese beetles, Western corn rootworms and, during outbreaks of Asian soybean aphids, more of these than soybeans in other plots.

Caterpillars and other insect larvae need nitrogen to grow and build new tissues, but adult insects can survive and reproduce on a high carbohydrate diet. So it made sense that more adults would migrate to the high CO2 plants, DeLucia said.

But did the higher sugar levels in the leaves explain the whole effect" To find the answer, the team allowed beetles to live out their lives in one of three conditions: on a high CO2 plant, on a low CO2 plant outside the Soy FACE plot, or on a low CO2 plant grown outside the test plot but which had its sugar content artificially boosted.

What we discovered was startling, DeLucia said.

The beetles on the high CO2 soybean plants lived longer, and as a result produced more offspring, than those living outside the Soy FACE plot. Even those fed a supplemental diet of sugars did not see their life span extended.

So here we were thinking that sugars were the main thing causing the beetles to feed more on these high CO2 leaves, DeLucia said. And that still may be true, but sugars arent whats causing them to live longer and have more breeding events and offspring.

The team turned its attention to the hormonal signaling pathways of the plants, focusing on a key defensive chemical the plants produced to ward off an insect attack. When insects eat their leaves, soybeans and other plants produce a hormone, jasmonic acid, that starts a chain of chemical reactions in the leaves that boost their defenses. Normally this cascade leads to the production of high levels of a compound called a protease inhibitor. When the insects ingest this enzyme, it inhibits their ability to digest the leaves.

What we discovered is that leaves grown under high CO2 lose their ability to produce jasmonic acid, and that whole defense pathway is shut down, Delucia said. The leaves are no longer adequately defended.

The higher carbohydrate content of the leaves and the lack of chemical defenses allowed the adult insects to feast and live longer and produce more offspring.

This study demonstrates that global environmental change is multifaceted, Berenbaum said. The impact of elevated carbon dioxide on crippling the capacity of the plant to respond to insect damage is exacerbated by the presence of invasive insect pests in soybean fields. The Japanese beetle, as the name suggests, is a relatively recent arrival in Illinois soybean fields. It is causing considerable damage now but this study suggests that its ability to inflict damage will only increase over time.

The researchers, both of whom also are affiliated with the universitys Institute for Genomic Biology, will now seek to determine whether the same process occurs in other plants.


'/>"/>

Contact: Diana Yates
diya@uiuc.edu
217-333-5802
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. Birds, bats and insects hold secrets for aerospace engineers
2. Ants and avalanches: Insects on coffee plants follow widespread natural tendency
3. Insects giant leap reconstructed by founder of sociobiology
4. Handbook of small grain insects available now
5. Tropical insects go the distance to inform rainforest conservation
6. Seismic images show dinosaur-killing meteor made bigger splash
7. Economists: Reduce fish catch now for bigger net profits later
8. Systems biology approach identifies nutrient regulation of biological clock in plants
9. A common genetic mechanism discovered in nitrogen-fixing plants
10. Scientists uncover a novel mechanism that regulates carbon dioxide fixation in plants
11. Gene that controls ozone resistance of plants could lead to drought-resistant crops
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Insects take a bigger bite out of plants in a higher CO2 world
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
(Date:6/2/2016)... , June 2, 2016 The Department ... has awarded the 44 million US Dollar project, for the ... Vehicle Plates including Personalization, Enrolment, and IT Infrastructure , ... in the production and implementation of Identity Management Solutions. Numerous ... however Decatur was selected for the ...
(Date:5/20/2016)... 20, 2016  VoiceIt is excited to announce ... By working together, VoiceIt and VoicePass ... and VoicePass take slightly different approaches to voice ... security and usability. ... new partnership. "This marketing and technology ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016 /PRNewswire/ - BIOREM Inc. (TSX-V: BRM) ("Biorem" or "the ... major shareholders, Clean Technology Fund I, LP and Clean ... based venture capital funds which together hold approximately ... fully diluted, as converted basis), that they have entered ... equity holdings in Biorem to TUS Holdings Co. Ltd. ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... their findings on what they believe could be a new and helpful biomarker ... new research. Click here to read it now. , Biomarkers are ...
(Date:6/27/2016)... Raleigh, NC (PRWEB) , ... June 27, 2016 ... ... a mission to bring innovative medical technologies, services and solutions to the healthcare ... development and implementation of various distribution, manufacturing, sales and marketing strategies that are ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
Breaking Biology Technology: