Navigation Links
Inhibiting serotonin in gut could cure osteoporosis
Date:2/7/2010

NEW YORK An investigational drug that inhibits serotonin synthesis in the gut, administered orally once daily, effectively cured osteoporosis in mice and rats reports an international team led by researchers from Columbia University Medical Center, in the Feb. 7 issue of Nature Medicine. Serotonin in the gut has been shown in recent research to stall bone formation. The finding could lead to new therapies that build new bone; most current drugs for osteoporosis can only prevent the breakdown of old bone.

"New therapies that inhibit the production of serotonin in the gut have the potential to become a novel class of drugs to be added to the therapeutic arsenal against osteoporosis," said Gerard Karsenty, M.D., Ph.D., chair of the Department of Genetics and Development at Columbia University College of Physicians and Surgeons, lead author of the paper. "With tens of millions of people worldwide affected by this devastating and debilitating bone loss, there is an urgent need for new treatments that not only stop bone loss, but also build new bone. Using these findings, we are working hard to develop this type of treatment for human patients."

The Nature Medicine paper follows on a major discovery: http://www.cumc.columbia.edu/news/press_releases/Karsenty-cell-serotonin-lrp5.html, also made by Dr. Gerard Karsenty's group (published in the Nov. 26, 2008 issue of Cell), that serotonin released by the gut inhibits bone formation, and that regulating the production of serotonin within the gut affects the formation of bone. Prior to this discovery, serotonin was primarily known as a neurotransmitter acting in the brain. Yet, 95 percent of the body's serotonin is found in the gut, where its major function is to inhibit bone formation (the remaining five percent is in the brain, where it regulates mood, among other critical functions). By turning off the intestine's release of serotonin, the team was able, in this new study, to cure osteoporosis in mice that had undergone menopause.

Based on their findings reported in the Cell paper, Dr. Karsenty and his team postulated that an inhibitor of serotonin synthesis should be an effective treatment for osteoporosis. Shortly thereafter, they read about an investigational drug, known as LP533401, which is able to inhibit serotonin in the gut. "When we learned of this compound, we thought that it was important to test it as proof of principle that there could be novel ways to treat osteoporosis with therapies that can be taken orally and regulate the formation of serotonin," said Dr. Karsenty.

Dr. Karsenty and his team developed a research protocol to test their theory, where they administered the compound orally, once daily, at a small dose, for up to six weeks to rodents experiencing post-menopausal osteoporosis. Results demonstrated that osteoporosis was prevented from developing, or when already present, could be fully cured. Of critical importance, levels of serotonin were normal in the brain, which indicated that the compound did not enter the general circulation and was unable to cross the blood-brain barrier, thereby avoiding many potential side effects.

Implications for the Treatment of Osteoporosis:

Most osteoporosis drugs, including those currently under clinical investigation, do not generate new bone but rather, prevent the breakdown of old bone. Only one drug currently on the market can generate new bone but it must be taken by injection once a day, and because it may increase the risk of bone cancer, at least in rats, its use is restricted for short-term use in women with severe osteoporosis.

"There is an urgent need to identify new, safe therapies that can increase bone formation on a long term basis and to such an extent that they compensate for the increase in bone resorption caused by menopause," said Dr. Karsenty. "Furthermore, it is important to note that since this study was conducted in rodents, it will need further confirmation in human subjects."

Osteoporosis: A Disease of Bone Mass Decline

Osteoporosis is a growing public health concern, with the aging population and the incidence of post-menopausal osteoporosis on the rise. It is a disease of low bone mass, most often caused by an increase in bone resorption not compensated by a similar increase in bone formation.

Far from being inert, bone constantly undergoes renovation, with some cells responsible for removing old material and other cells responsible for creating new bone. In humans, after age 20, the balance between bone formation and breakdown tips toward breakdown, and bone mass starts to decline. In women, the rate of decline increases after menopause, when estrogen levels drop and cells that tear down old bone become overactive. Osteoporosis is a disease in which bones become fragile and porous, increasing the risk of breaks. It is diagnosed when bone mass drops below a certain level.


'/>"/>

Contact: Elizabeth Streich
eas2125@columbia.edu
212-305-6535
Columbia University Medical Center
Source:Eurekalert

Related biology news :

1. New strategy for inhibiting virus replication
2. Corrosion-inhibiting coatings containing good bacteria
3. Inhibiting proteins may prevent cartilage breakdown in arthritis patients
4. The bonsai effect: Wounded plants make jasmonates, inhibiting cell division, stunting growth
5. LSUHSC awarded patent for compound inhibiting cancer and other diseases
6. Researchers find cancer-inhibiting compound under the sea
7. Tumor-inhibiting protein could be effective in treating leukemia
8. Lack of happiness hormone serotonin in the brain causes impaired maternal behavior in mice
9. Researchers iron out new role for serotonin
10. Sex differences in the brains serotonin system
11. Why serotonin can cause depression and anxiety
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2016)... DALLAS , June 20, 2016 ... criminal justice technology solutions for public safety, investigation, ... by the prisons involved, it has secured the ... Corrections (DOC) facilities for Managed Access Systems (MAS) ... (4) additional facilities to be installed by October, ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... http://photos.prnewswire.com/prnh/20160606/375871LOGO ...
(Date:6/1/2016)... Favorable Government Initiatives Coupled With ... Identification to Boost Global Biometrics System Market Through 2021  ... report, " Global Biometrics Market By Type, By ... 2011 - 2021", the global biometrics market is projected ... of growing security concerns across various end use sectors ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
(Date:6/23/2016)... 23, 2016   EpiBiome , a precision microbiome ... in debt financing from Silicon Valley Bank (SVB). The ... to advance its drug development efforts, as well as ... "SVB has been an incredible strategic partner to ... traditional bank would provide," said Dr. Aeron Tynes ...
(Date:6/23/2016)... ... 23, 2016 , ... In a new case report published today in STEM ... who developed lymphedema after being treated for breast cancer benefitted from an injection of ... dealing with this debilitating, frequent side effect of cancer treatment. , Lymphedema ...
Breaking Biology Technology: