Navigation Links
Infection biology: How Legionella subverts to survive
Date:7/18/2013

Bacteria of the genus Legionella have evolved a sophisticated system to replicate in the phagocytic cells of their hosts. Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have now identified a novel component of this system.

In humans, Legionella is responsible for the so-called Legionnaires' disease, a form of bacterial pneumonia that is often lethal. The bacteria can also cause Pontiac fever, a flu-like condition characterized by coughing and vomiting. Most Legionella-associated illnesses in humans are caused by Legionella pneumophila.

These microorganisms are found in soil, lakes and rivers, and can enter our water supply via the groundwater. The greatest risk of human infection arises when the bacteria colonize air-conditioning ducts or piping used to transport warm water. Persons can be infected when they inhale contaminated aerosols in the shower, for instance.

The research group led by Hubert Hilbi, Professor of Medical Microbiology at LMU, studies how these intracellular parasites survive and replicate in phagocytic cells of their eukaryotic hosts or in the environment. For instance, the pathogen can grow and proliferate in the amoeba Dictyostelium, which normally preys on soil bacteria, engulfing and digesting them. But Legionella turns the tables, resists degradation and continues to grow in the amoeba until it is so full of bacteria that it bursts.

Legionella sabotages the immune system

When L. pneumophila cells infect the human lung, essentially the same thing happens. The bacteria are taken up by white blood cells called macrophages, which normally clear bacterial pathogens from the circulation. But instead of being consumed, the bacteria replicate in the macrophages and ultimately destroy them. Robbed of its first line of defense, the immune system has difficulty coping with the infection, and a life-threatening pneumonia may develop.

The biochemical processes that enable the parasites to outwit their temporary hosts are highly complex. Thus, L. pneumophila secretes around 300 proteins into the infected cell, which is forced to redirect its resources for the bacterium's benefit.

Hilbi and his colleagues have now characterized one of these proteins and describe its mode of action for the first time. This factor, called RidL, disrupts an intracellular transport system that is necessary for the elimination of ingested bacteria. RidL binds to the so-called retromer complex, which is needed for the continued recycling of receptors, which deliver degradative enzymes to phagosomes containing bacteria destined for digestion. "We demonstrate that Legionella blocks the retromer-dependent transport route, thus promoting its own survival in the cell," Hilbi explains. This function is unique. "Proteins that act in this way are otherwise unknown in the bacterial world, and are not found in higher organisms either," he adds.


'/>"/>

Contact: Luise Dirscherl
dirscherl@lmu.de
49-892-180-2706
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Queens scientists seek vaccine for Pseudomonas infection
2. BPA could affect reproductive capabilities, cause infection of the uterus
3. To drive infections, a hijacking virus mimics a cells signaling system
4. Women & Infants participating in study of treatment of common viral infection in pregnancy
5. Bartonella infection associated with rheumatoid illnesses in humans
6. Salmonella infection, but not as we know it
7. Vitamin D supplements may protect against viral infections during the winter
8. New data suggests HIV superinfection rate comparable to initial HIV infection
9. How alert hospital employees improved hospitals MSRA infection rate
10. Childhood virus infection linked to prolonged seizures with fever
11. Infection biology: The elusive third factor
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/3/2016)... , March 3, 2016  FlexTech, a SEMI ... categories of Innovation, Research & Development, Leadership in Education, ... This is the 9 th year of the ... of companies and individuals from past years . ... on a pre-described set of criteria, by a panel ...
(Date:3/2/2016)... March 2, 2016 ... addition of the  "Global Biometrics Market in ... ,     (Logo: http://photos.prnewswire.com/prnh/20130307/600769) , , Global biometrics ... at a CAGR of around 27%   ... has announced the addition of the  "Global ...
(Date:3/1/2016)... SAN FRANCISCO , March 1, 2016  (RSAC ... every year, but a whopping $118 billion is lost ... due to overzealous and inaccurate fraud detection. At the ... shift in the way companies handle authentication by devaluing ... biometric and behavioral analytics. --> ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... 29, 2016 , ... Amendia, Inc., a leading designer, developer, ... the completion of a significant transaction and partnership that positions Amendia for accelerated ... Kohlberg & Company, L.L.C. (“Kohlberg”), a leading private equity firm specializing in ...
(Date:4/29/2016)... ... ... Implant Systems announced today that the two-level components for the Revolution™ Spinal System were ... components expand the capabilities of the system and allow Revolution™ to be utilized for ... company has seen significant sales growth in 1Q 2016, and the system is currently ...
(Date:4/28/2016)... (PRWEB) , ... April 28, 2016 , ... ... and ongoing support for Connecticut's innovative, growing companies, today announced the launch of ... and financial technology (fintech) companies. , “VentureClash looks to attract the ...
(Date:4/27/2016)... ... April 27, 2016 , ... Cambridge Semantics, the ... technology, today announced that it has been named to The Silicon Review’s “20 Fastest ... and other markets, Cambridge Semantics serves the needs of end users facing some of ...
Breaking Biology Technology: