Navigation Links
Inexpensive, abundant starch fibers could lead to ouchless bandages
Date:5/1/2012

A process that spins starch into fine strands could take the sting out of removing bandages, as well as produce less expensive and more environmentally-friendly toilet paper, napkins and other products, according to Penn State food scientists.

"There are many applications for starch fibers," said Lingyan Kong, graduate student, food science, "Starch is the most abundant and also the least expensive of natural polymers."

Kong, who worked with Greg Ziegler, professor of food science, used a solvent to dissolve the starch into a fluid that can then be spun into long strands, or fibers. These fibers can be combined and formed into paper-like mats similar to napkins, tissues and other types of paper products.

Once the process is scaled to industrial size, companies could make bandages and other medical dressings using starch fibers. Unlike bandages that are currently on the market that must be -- often painfully -- removed, starch bandages would degrade into glucose, a substance the body safely absorbs.

"Starch is easily biodegradable, so bandages made from it would, over time, be absorbed by the body," said Kong. "So, you wouldn't have to remove them."

Starch is a polymer made of amylose and amylopectin. Polymers are large molecules that are composed of chains of smaller, repeating molecules. Starches, typically found in corn, potatoes, arrowroot and other plants, are most familiar to consumers as cornstarch, potato starch and tapioca starch.

Starch does not completely dissolve in water but instead becomes a gel -- or, starch paste -- that is too thick to make fibers. To solve the problem, the researchers added a solvent to help the solution dissolve the starch, but not destroy its molecular structure, Kong said.

The researchers used an electrospinning device that, in addition to the solvent, helped stretch the starch solution into fibers. The device uses a high voltage electrical charge to create a charge repulsion to overcome surface tension, which stretches the droplets of starch into long strands.

Kong said companies could modify the technique to scale the process for industrial uses.

During experiments on starch fibers, the researchers successfully used an extended range of amylose concentrations from 25 to 100 percent. Kong noted that because starch is so abundant, it is less expensive than other materials currently used to form fibers. Cellulose, typically derived from trees, is one of the most common sources of polymers. Petroleum-based polymers are also used as raw materials. However, both cellulose and petroleum-based materials continue to increase in price, as well as present environmental challenges.

The researchers have filed a provisional patent for this work. The U.S. Department of Agriculture supported this work.


'/>"/>

Contact: Matt Swayne
mls29@psu.edu
814-865-9481
Penn State
Source:Eurekalert

Related biology news :

1. Turning waste into inexpensive, green fuel
2. US Forest Service study finds hemlock still abundant despite adelgid infestation
3. Hemlocks still abundant despite adelgid infestations
4. Rodents were diverse and abundant in prehistoric Africa when our human ancestors evolved
5. New way to generate abundant functional blood vessel cells from human stem cells discovered
6. Starch-controlling gene fuels more protein in soybean plants
7. Cell membranes behave like cornstarch and water
8. New research underscores the health benefits of fibers, including bone health
9. Nanocrystal-coated fibers might reduce wasted energy
10. Killer silk: Making silk fibers that kill anthrax and other microbes in minutes
11. How protein networks stabilize muscle fibers: Same mechanism as for DNA
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... Dec. 15, 2016 Advancements in ... health wellness and wellbeing (HWW), and security ... three new passenger vehicles begin to feature ... recognition, heart beat monitoring, brain wave monitoring, ... monitoring, and pulse detection. These will be ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/7/2016)... According to a new market research report "Emotion Detection and Recognition ... Service, Application Area, End User, And Region - Global Forecast to 2021", published ... in 2016 to USD 36.07 Billion by 2021, at a Compound Annual Growth ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... DC , January 12, 2017 ... up the world,s biggest facility for producing mycorrhizae. The ... the nutrient tapping potential of mycorrhizae and developed a ... ... (Logo: http://mma.prnewswire.com/media/456932/PRNE_TERI_Logo.jpg) The TERI facility ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... enhanced the platform to accommodate increasingly complex and sophisticated deployments, resulting in ... more. In addition to these improvements, the latest release brings enhanced data ...
(Date:1/11/2017)... ... 11, 2017 , ... Photonics industry and STEM advocates associated ... the U.S. Congress and President Obama for their recognition of the importance of ... Innovation and Competitiveness Act (AICA). , The language of the act (S. 3084) ...
(Date:1/11/2017)... ... January 11, 2017 , ... Microbial genomics leader uBiome, ... Its most recent microbiome impact grant award has been made to Dr. Eon ... long-term use of oral antibiotics, prescribed for skin conditions, on the gut microbiome. ...
Breaking Biology Technology: