Navigation Links
In search for a vaccine, IU biologist receives $2.3 million to explore chlamydia genomics
Date:3/26/2012

BLOOMINGTON, Ind. -- An Indiana University biologist has been awarded over $2.3 million from the National Institutes of Health to genetically modify variants of the human pathogen chlamydia in hopes of finding a vaccine for the most commonly reported bacterial infectious disease in the United States.

David E. Nelson, an assistant professor in the IU Bloomington College of Arts and Sciences' Department of Biology, and researchers in his laboratory plan to genetically backtrack the trail of a consummate bacterial parasite -- Chlamydia trachomatis -- by mutating and characterizing the functions of targeted genes of the pathogen. According to the U.S. Centers for Disease Control and Prevention, more than 1.3 million Americans were infected with chlamydia in 2010, the largest number of cases ever reported to CDC for any condition.

Nelson's team will use the NIH funding over the next five years to try to understand how the bacterial pathogen circumvents host immune systems and targets preferred tissues, resulting in sexually transmitted infections and blinding trachoma in hundreds of millions of people, as well as billions of dollars in annual health care costs worldwide.

"Understanding the pathogenesis of a disease, how it originates and develops, is by necessity a cross-disciplinary exercise that in this case brings together research in model organisms, microbiology and genomics in an attempt to better understand the virulence of a very nasty pathogen," Nelson said. "A major reason for gaps in our knowledge has been that bacteria in this genus, of which multiple variants are human pathogens, could not be genetically manipulated."

What limits genetic manipulation of chlamydia, and what makes it particularly nasty, he said, is that the bacteria live protected inside human and animal cells, which prevents the standard method of gene manipulation -- inserting foreign DNA into bacteria -- from being used.

But by taking an approach previously used extensively in plant genetics called targeting-induced local lesions in genomes, newly developed genetic tools now make it possible for researchers to better explore genes they believe help determine the types of tissues and hosts that different chlamydia species infect. One of the first places Nelson's team is looking is in a genomic region called the plasticity zone, where much of the genetic variation among the disease-causing strains of chlamydia appears to reside.

"With these new tools we can use a reverse genetic approach to inactivate plasticity zone (PZ) genes and then test to see if the mutants that we've created have certain sensitivities or have alterations in pathogenicity," Nelson said. "One of our suspicions is that PZ genes counteract host cell proteins that mediate immunity."

By isolating plasticity zone mutants, the lab hopes to determine whether PZ genes dictate certain niche attributes. By employing genetic screens, they may be able to identify the genes chlamydia species use to target certain tissues and circumvent immunity. The group will also use forward genetic screens, lateral gene transfer and genome sequencing, among other tools, to try to understand which chlamydia genes work to evade host immune responses and to identify the genetic blueprint in animals and humans that could offer insight into why host defenses are sensitive to chlamydia.

"In the long term we hope our work provides clues toward designing a vaccine and developing strong models of human chlamydial disease," Nelson said. "But most immediately we're looking to identify and characterize the factors that allow this pathogen to grow, how it interacts with other bacteria and how it avoids host immune systems so well."

Women, especially young and minority women, are hardest hit by chlamydia, and the CDC recommends annual chlamydia screening for young women under the age of 26. Earlier this month, the CDC said the actual rate of new infections in the U.S. during 2010 may have been nearly 2.8 million because the infection often has no symptoms.

Chlamydia diseases include sexually transmitted infections, which can result in pelvic inflammatory disease that can cause infertility in women, and trachoma, which can cause blindness. The World Health Organization estimates that more than 140 million people have trachoma in regions of Africa, the Middle East, Central and Southeast Asia and Latin America, and that 92 million new chlamydia infections occur each year.


'/>"/>
Contact: Steve Chaplin
stjchap@iu.edu
812-856-1896
Indiana University
Source:Eurekalert  

Related biology news :

1. Wistar Institute researcher receives New Innovator award from NIH
2. NC State researchers get to root of parasite genome
3. White Mountain Research Station to host climate change conference
4. Stevens awarded $1M for advanced biofuels research
5. Researchers find animal with ability to survive climate change
6. Researchers find an essential gene for forming ears of corn
7. Researchers note differences between people and animals on calorie restriction
8. Researcher working on destruction of chemical weapons
9. Researchers study acoustic communication in deep-sea fish
10. Researchers discover that growing up too fast may mean dying young in honey bees
11. The Rett Syndrome Research Trust launches operations
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
In search for a vaccine, IU biologist receives $2.3 million to explore chlamydia genomics
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell , ... technology, and STMicroelectronics (NYSE: STM), a global ... electronics applications, announced today the launch of a ... biometric wearables that includes ST,s compact SensorTile ... Benchmark™ biometric sensor system. Together, SensorTile and ...
(Date:12/15/2016)... , December 15, 2016 Arvato ... an agreement with NuData Security, an award-winning international ... will enable clients to focus on good customer experience, balancing ... regulation. ... In order to provide a one-stop fraud prevention suite, Arvato ...
(Date:12/15/2016)... 2016 "Increase in mobile transactions is driving ... biometrics market is expected to grow from USD 4.03 ... at a CAGR of 29.3% between 2016 and 2022. ... growing demand for smart devices, government initiatives, and increasing ... component is expected to grow at a high rate ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... Cleveleys, UK (PRWEB) , ... ... ... results presented by surgeons at the 2016 annual meeting of the North ... beneficial clinical outcomes, for patients in the majority of cases, when PEEK-OPTIMA™ ...
(Date:1/17/2017)... 2017  Protagonist Therapeutics, Inc. (NASDAQ: ... a global Phase 2b induction study in ulcerative ... alpha4beta7 integrin. The aim of this randomized, double-blind, ... safety/tolerability and efficacy of PTG-100 in approximately 240 ... active disease. "We are very ...
(Date:1/16/2017)... 16, 2017  Eurofins Genomics today announced the expansion ... customers to receive their primers in a shorter turnaround ... quality found with other providers. Express oligos are available ... at no additional fee. Researchers use ... including DNA sequencing, genotyping, site-directed mutagenesis, and cloning. Often, ...
(Date:1/13/2017)... ... January 13, 2017 , ... Two ... organic compound called fulvic acid that farms, greenhouses and hydroponics operations use to ... are among the fastest growing segments of customers using this high grade fulvic ...
Breaking Biology Technology: