Navigation Links
Implanted biofuel cell converts bug's chemistry into electricity
Date:1/6/2012

An insect's internal chemicals can be converted to electricity, potentially providing power for sensors, recording devices or to control the bug, a group of researchers at Case Western Reserve University report.

The finding is yet another in a growing list from universities across the country that could bring the creation of insect cyborgs touted as possible first responders to super spies out of science fiction and into reality. In this case, the power supply, while small, doesn't rely on movement, light or batteries, just normal feeding.

The work is published in the online Journal of the American Chemical Society.

"It is virtually impossible to start from scratch and make something that works like an insect," said Daniel Scherson, chemistry professor at Case Western Reserve and senior author of the paper.

"Using an insect is likely to prove far easier," Scherson said. "For that, you need electrical energy to power sensors or to excite the neurons to make the insect do as you want, by generating enough power out of the insect itself."

Scherson teamed with graduate student Michelle Rasmussen, Biology Professor Roy E. Ritzmann, Chemistry Professor Irene Lee and Biology Research Assistant Alan J. Pollack to develop an implantable biofuel cell to provide usable power.

The key to converting the chemical energy is using enzymes in series at the anode.

The first enzyme breaks the sugar, trehalose, which a cockroach constantly produces from its food, into two simpler sugars, called monosaccharides. The second enzyme oxidizes the monosaccharides, releasing electrons.

The current flows as electrons are drawn to the cathode, where oxygen from air takes up the electrons and is reduced to water.

After testing the system using trehalose solutions, prototype electrodes were inserted in a blood sinus in the abdomen of a female cockroach, away from critical internal organs.

"Insects have an open circulatory system so the blood is not under much pressure," Ritzmann explained. "So, unlike say a vertebrate, where if you pushed a probe into a vein or worse an artery (which is very high pressure) blood does not come out at any pressure. So, basically, this is really pretty benign. In fact, it is not unusual for the insect to right itself and walk or run away afterward."

The researchers found the cockroaches suffered no long-term damage, which bodes well for long-term use.

To determine the output of the fuel cell, the group used an instrument called a potentiostat. Maximum power density reached nearly 100 microwatts per square centimeter at 0.2 volts. Maximum current density was about 450 microamps per square centimeter.

The study was five years in the making. Progress stalled for nearly a year due to difficulties with trehalase the first enzyme used in the series.

Lee suggested they have the trehalase gene chemically synthesized to generate an expression plasmid, which is a DNA molecule separate from chromosomal DNA, to allow the production of large quantities of purified enzyme from Escherichia coli. "Michelle then began collecting enzyme that proved to have much higher specific activities than those obtained from commercial sources," Lee said. "The new enzyme led to success."

The researchers are now taking several steps to move the technology forward: miniaturizing the fuel cell so that it can be fully implanted and allow an insect to run or fly normally; investigating materials that may last long inside of an insect, working with other researchers to build a signal transmitter that can run on little energy; adding a lightweight rechargeable battery.

"It's possible the system could be used intermittently," Scherson said. "An insect equipped with a sensor could measure the amount of noxious gas in a room, broadcast the finding, shut down and recharge for an hour, then take a new measurement and broadcast again."


'/>"/>
Contact: Kevin Mayhood
kevin.mayhood@case.edu
216-368-4442
Case Western Reserve University
Source:Eurekalert

Related biology news :

1. New technology may prolong the life of implanted devices, from pacemakers to chemotherapy ports
2. Researchers develop first implanted device to treat balance disorder
3. Breakthrough: A robot brain implanted in a rodent
4. Stevens awarded $1M for advanced biofuels research
5. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
6. Mandate for biofuels production requires science-based policy and global perspective
7. Oklahoma researchers support biodiversity in biofuels production
8. More research needed to make good on biofuel promise, experts say
9. Experts agree: Environmental standards needed for biofuels
10. Discovering drugs, biofuels in tropical seas
11. Minnesota ecology professor wins international award for biodiversity and biofuels research
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... Finland , June 9, 2016 ... National Police deploy Teleste,s video security solution to ensure the ... France during the major tournament ... data communications systems and services, announced today that its video ... Prefecture to back up public safety across the ...
(Date:6/2/2016)... June 2, 2016 Perimeter Surveillance ... Unmanned Systems, Physical Infrastructure, Support & Other Service  ... visiongain offers comprehensive analysis of the global ... will generate revenues of $17.98 billion in 2016. ... Inc, a leader in software and hardware technologies for ...
(Date:5/12/2016)... May 12, 2016 WearablesResearch.com , a ... the overview results from the Q1 wave of its ... wave was consumers, receptivity to a program where they ... a health insurance company. "We were surprised ... says Michael LaColla , CEO of Troubadour Research, ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June, 23, 2016  The Biodesign Challenge ... envision new ways to harness living systems and biotechnology, ... Art (MoMA) in New York City ... 130 participating students, showcased projects at MoMA,s Celeste Bartos ... Paola Antonelli , MoMA,s senior curator of architecture and ...
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... quality, regulatory and technical consulting, provides a free webinar on Performing ... July 13, 2016 at 12pm CT at no charge. , Incomplete investigations are ...
(Date:6/22/2016)... , June 22, 2016 Research and ... Global Markets" report to their offering. ... billion in 2014 from $29.3 billion in 2013. The market is ... of 13.8% from 2015 to 2020, increasing from $50.6 billion in ... projected product forecasts during the forecast period (2015 to 2020) are ...
Breaking Biology Technology: