Navigation Links
Implantable silk metamaterials could advance biomedicine, biosensing
Date:8/12/2010

MEDFORD/SOMERVILLE, Mass. -- Researchers at the Tufts University School of Engineering and Boston University have fabricated and characterized the first large area metamaterial structures patterned on implantable, bio-compatible silk substrates.

The research, reported online July 21, 2010, in the journal Advanced Materials, provides a promising path towards the development of a new class of metamaterial-inspired implantable biosensors and biodetectors.

Metamaterials are artificial electromagnetic composites, typically made of highly conducting metals, whose structures respond to electromagnetic waves in ways that atoms in natural materials do not. The most futuristic metamaterials would absorb all light, to create heat to destroy cancerous tissue, or bend light completely around an object, rendering that object invisiblean imaginary delight for fans of science fiction or spy novels.

"However, the real power of metamaterials is the possibility of constructing materials with a user-designed electromagnetic response at a precisely controlled target frequency. This opens the door to novel electromagnetic behaviors such as negative refractive index, perfect lensing, perfect absorbers and invisibility cloaks," explains Tufts Professor of Biomedical Engineering Fiorenzo Omenetto, who led the research team. Omenetto also holds an appointment in the Department of Physics at Tufts School of Arts and Sciences.

The team focused on metamaterial silk composites that are resonant at the terahertz frequency. This is the frequency where many chemical and biological agents show unique "fingerprints," which could potentially be used for biosensing.

Small Antennas Act as One

The researchers sprayed gold-based metamaterial structures directly on pre-made silk films with micro-fabricated stencils using a shadow mask evaporation technique. Spraying the metamaterial onto the flexible silk films created a composite so pliable that it could be wrapped into small, capsule-like cylinders.

Silk films are highly transparent at THz frequencies, so metamaterial silk composites display a strong resonant electromagnetic response. Each fabricated sample was 1 square centimeter and contained 10,000 metamaterial resonators with unique resonant response at the desired frequencies.

According to Fiorenzo Omenetto, the research team likens the concept to "a very peculiar kind of antennaactually, a lot of small antennas that behave as one. The silk metamaterial composite is sensitive to the dielectric properties of the silk substrate and can monitor the interaction between the silk and the local environment. For example, the metamaterial might signal changes in a bioreactive silk substrate that has been doped with proteins or enzymes."

The addition of a pure biological substrate such as silk to the gold metamaterial adds immense latitude and opportunity for unforeseen applications, says Professor Richard Averitt, one of Omenetto's collaborators from Boston University and an expert on metamaterials.

The resonance response could be used as an implantable electromagnetic signature for contrast agents or bio-tracking applications, says co-author Hu Tao, a former Boston University graduate student who is now a postdoctoral associate in Omenetto's lab.

In Situ Bio-Sensing

To demonstrate the concept, the researchers conducted a series of in vitro experiments that examined the electromagnetic response of the silk metamaterials when implanted under thin slices of muscle tissue. They found that the metamaterials retained their novel resonance properties while implanted. The same process could be readily adapted to fabricate silk metamaterials at other frequencies, according to Tao.

"Our approach offers great promise for applications such as in situ bio-sensing with implanted medical devices and the transmission of medical information from within the human body," says Omenetto. "Imagine the benefits of monitoring the rate of drug delivery from a drug-eluting cardiac stent, making a perfect absorber that can be implanted to attack diseased tissue by heat, or wrapping an 'invisibility cloak' around an organ to examine the tissue behind it."


'/>"/>

Contact: Kim Thurler
kim.thurler@tufts.edu
617-627-3175
Tufts University
Source:Eurekalert

Related biology news :

1. Scientists closer to making implantable bone material, thanks to new research
2. MIT’s implantable device offers continuous cancer monitoring
3. NC State finds new nanomaterial could be breakthrough for implantable medical devices
4. Free statins with fast food could neutralize heart risk, scientists say
5. Deathstalker scorpion venom could improve gene therapy for brain cancer
6. Innovation could bring super-accurate sensors, crime forensics
7. UofL public health research could impact environmental policy decisions
8. New catalyst of platinum nanoparticles could lead to conk-out free, stable fuel cells
9. New lab test could identify imatinib resistance
10. Kids could get more whole grains from after-school snacks, University of Minnesota study finds
11. Waterborne diseases could cost over $500 million annually in US
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/28/2016)... Synaptics (NASDAQ: SYNA ), a leading developer of ... ended December 31, 2015. --> ... increased 2 percent compared to the comparable quarter last year to ... was $35.0 million, or $0.93 per diluted share. ... first quarter of fiscal 2016 grew 9 percent over the prior ...
(Date:1/25/2016)... Software, the world-leading supplier of image data management solutions ... data management solution OMERO Plus for the newly established ... Photo - http://photos.prnewswire.com/prnh/20160125/325328LOGO ... analysis measures the characteristics and behavior of cells, tissues ... as health and disease, the presence or absence of ...
(Date:1/21/2016)... 21, 2016 --> ... market research report "Emotion Detection and Recognition Market by Technology ... (Facial Expression, Voice Recognition and Others), Services, Application ... to 2020", published by MarketsandMarkets, the global Emotion ... USD 22.65 Billion by 2020, at a CAGR ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... ... February 08, 2016 , ... ... services, announced today the launch of its revamped and improved website. In an ... service solutions, the redesigned website will better communicate how the company designs and ...
(Date:2/9/2016)... ... February 09, 2016 , ... The publishing industry has ... publishing is one of the popular publication models that has received wider acknowledgement ... and 3000+ International Conferences across the globe, OMICS International is all ...
(Date:2/9/2016)... LONDON , February 9, 2016 ... replace paper and protect IP   E-WorkBook ... will be rolled out in Germany ... and protect valuable IP. Users will be able to search ... or experiment as part of the application, to boost collaboration ...
(Date:2/8/2016)... , Feb. 8, 2016 /PRNewswire/ - BIOREM Inc. (TSXV: BRM) ... top ten finalists for clean technology companies in the TSX ... top 10 companies listed on the TSX Venture Exchange, in ... gas, clean technology & life sciences, diversified industries ... weighting given to return on investment, market cap growth, trading ...
Breaking Biology Technology: