Navigation Links
Implantable silk metamaterials could advance biomedicine, biosensing
Date:8/12/2010

MEDFORD/SOMERVILLE, Mass. -- Researchers at the Tufts University School of Engineering and Boston University have fabricated and characterized the first large area metamaterial structures patterned on implantable, bio-compatible silk substrates.

The research, reported online July 21, 2010, in the journal Advanced Materials, provides a promising path towards the development of a new class of metamaterial-inspired implantable biosensors and biodetectors.

Metamaterials are artificial electromagnetic composites, typically made of highly conducting metals, whose structures respond to electromagnetic waves in ways that atoms in natural materials do not. The most futuristic metamaterials would absorb all light, to create heat to destroy cancerous tissue, or bend light completely around an object, rendering that object invisiblean imaginary delight for fans of science fiction or spy novels.

"However, the real power of metamaterials is the possibility of constructing materials with a user-designed electromagnetic response at a precisely controlled target frequency. This opens the door to novel electromagnetic behaviors such as negative refractive index, perfect lensing, perfect absorbers and invisibility cloaks," explains Tufts Professor of Biomedical Engineering Fiorenzo Omenetto, who led the research team. Omenetto also holds an appointment in the Department of Physics at Tufts School of Arts and Sciences.

The team focused on metamaterial silk composites that are resonant at the terahertz frequency. This is the frequency where many chemical and biological agents show unique "fingerprints," which could potentially be used for biosensing.

Small Antennas Act as One

The researchers sprayed gold-based metamaterial structures directly on pre-made silk films with micro-fabricated stencils using a shadow mask evaporation technique. Spraying the metamaterial onto the flexible silk films created a composite so pliable that it could be wrapped into small, capsule-like cylinders.

Silk films are highly transparent at THz frequencies, so metamaterial silk composites display a strong resonant electromagnetic response. Each fabricated sample was 1 square centimeter and contained 10,000 metamaterial resonators with unique resonant response at the desired frequencies.

According to Fiorenzo Omenetto, the research team likens the concept to "a very peculiar kind of antennaactually, a lot of small antennas that behave as one. The silk metamaterial composite is sensitive to the dielectric properties of the silk substrate and can monitor the interaction between the silk and the local environment. For example, the metamaterial might signal changes in a bioreactive silk substrate that has been doped with proteins or enzymes."

The addition of a pure biological substrate such as silk to the gold metamaterial adds immense latitude and opportunity for unforeseen applications, says Professor Richard Averitt, one of Omenetto's collaborators from Boston University and an expert on metamaterials.

The resonance response could be used as an implantable electromagnetic signature for contrast agents or bio-tracking applications, says co-author Hu Tao, a former Boston University graduate student who is now a postdoctoral associate in Omenetto's lab.

In Situ Bio-Sensing

To demonstrate the concept, the researchers conducted a series of in vitro experiments that examined the electromagnetic response of the silk metamaterials when implanted under thin slices of muscle tissue. They found that the metamaterials retained their novel resonance properties while implanted. The same process could be readily adapted to fabricate silk metamaterials at other frequencies, according to Tao.

"Our approach offers great promise for applications such as in situ bio-sensing with implanted medical devices and the transmission of medical information from within the human body," says Omenetto. "Imagine the benefits of monitoring the rate of drug delivery from a drug-eluting cardiac stent, making a perfect absorber that can be implanted to attack diseased tissue by heat, or wrapping an 'invisibility cloak' around an organ to examine the tissue behind it."


'/>"/>

Contact: Kim Thurler
kim.thurler@tufts.edu
617-627-3175
Tufts University
Source:Eurekalert

Related biology news :

1. Scientists closer to making implantable bone material, thanks to new research
2. MIT’s implantable device offers continuous cancer monitoring
3. NC State finds new nanomaterial could be breakthrough for implantable medical devices
4. Free statins with fast food could neutralize heart risk, scientists say
5. Deathstalker scorpion venom could improve gene therapy for brain cancer
6. Innovation could bring super-accurate sensors, crime forensics
7. UofL public health research could impact environmental policy decisions
8. New catalyst of platinum nanoparticles could lead to conk-out free, stable fuel cells
9. New lab test could identify imatinib resistance
10. Kids could get more whole grains from after-school snacks, University of Minnesota study finds
11. Waterborne diseases could cost over $500 million annually in US
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/16/2017)... 16, 2017  Genos, a community for personal ... has received Laboratory Accreditation from the College of ... to laboratories that meet stringent requirements around quality, ... processes. "Genos is committed to maintaining ... We,re honored to be receiving CAP accreditation," said ...
(Date:2/13/2017)... 13, 2017  RSA Conference -- RSA, a Dell ... designed to enhance fraud detection and investigation across ... RSA Fraud & Risk Intelligence Suite. The new ... additional insights from internal and external sources as ... their customers from targeted cybercrime attacks. ...
(Date:2/10/2017)... Research and Markets has announced the addition ... and Commercial Aspects" to their offering. ... Biomarkers play an ... for selection of treatment as well for monitoring the results. ... in modern medicine. Biochip/microarray technologies and next generation sequencing are ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... According to a report by Transparency Market Research (TMR), ... the presence of a large pool of participants; however, only a ... Sigma-Aldrich, compete with each other in this market. With Proliant being ... of this market in 2016.  ... As of now, a large number of vendors are ...
(Date:3/23/2017)... , March 23, 2017 ... at four equities in the Biotech industry: Sangamo Therapeutics ... Biologics Inc. (NYSE MKT: SYN), and Regulus Therapeutics Inc. ... st , 2017, Credit Suisse upgraded its rating on Pharmaceuticals/Biotechnology ... downloading their free report at: ...
(Date:3/22/2017)... 2017 Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN), today announced ... U.K. Biobank and GSK to generate genetic sequence data from ... initiative will enable researchers to gain valuable insights to support ... range of serious and life threatening diseases. ... Genetic evidence has ...
(Date:3/22/2017)... 2017  Ascendis Pharma A/S (Nasdaq: ASND), a ... to address significant unmet medical needs in rare ... year ended December 31, 2016. ... as we broadened our pipeline and pursued our ... company with an initial focus on endocrinology," said ...
Breaking Biology Technology: