Navigation Links
Immune system release valve
Date:5/25/2011

The molecular machines that defend our body against infection don't huff and puff, but some of them The molecular machines that defend our body against infection don't huff and puff, but some of them apparently operate on the same principle as a steam engine. Weizmann Institute scientists have discovered a mechanism that controls inflammation similarly to a steam-engine valve: Just when the inflammatory mechanism that protects cells against viruses reaches its peak of activity, the molecular "steam-release valve" interferes, restoring this mechanism to its resting state, ready for re-activation. This finding might shed new light on such inflammatory disorders as rheumatoid arthritis or inflammatory bowel disease, and point the way to developing effective therapies.

How does the cellular "steam-release valve" work? The scientists have discovered that its crucial component is the enzyme called caspase-8. When the cell is invaded by a virus, caspase-8 joins a large molecular complex that forms in order to send out an inflammatory signal. However, this same signal, once triggered, makes sure that the inflammatory response will eventually be shut down. The mechanism can be likened to the peak of the steam cycle when the valve opens, releasing steam and restoring the engine to its initial position. In the case of the cell, the inflammatory signal prompts caspase-8 to destroy a protein called RIP1 a crucial signal amplifier after RIP1 has reached a state in which it can produce maximal amplification. The inflammatory cycle is thus completed: The signaling mechanism, precisely after reaching its peak activity level, returns to its neutral state, ready to enter yet another inflammatory cycle in case the cell is still under viral attack.

Until recently, caspase-8, discovered by study leader Prof. David Wallach of Weizmann's Biological Chemistry Department some 15 years ago, was known to prevent inflammation in only one way by causing damaged cells to self-destruct in a process called apoptosis. In the course of this process, the contents of the dying cells are prevented from spreading around and triggering inflammation. The present study, reported recently in Immunity, reveals an entirely new mechanism by which caspase-8 can control inflammation more directly. The research was performed in Wallach's lab by Dr. Akhil Rajput, Dr. Andrew Kovalenko, Dr. Konstantin Bogdanov, Seung-Hoon Yang, Dr. Tae-Bong Kang, Dr. Jin-Chul Kim and Dr. Jianfang Du.

The study results might be relevant for various types of inflammation not only that caused by viruses and can thus provide important insights into inflammatory disorders. Since such disorders may occur when the inflammatory response fails to be shut down properly, it's possible that caspase-8 malfunction and the resulting excessive activity of the RIP1 "signal amplifier" might be involved. And if this is indeed the case, a new treatment approach could aim at blocking RIP1, thereby fighting inflammation in a precise and selective manner.


'/>"/>

Contact: Yivsam Azgad
news@weizmann.ac.il
972-893-43856
Weizmann Institute of Science
Source:Eurekalert

Related biology news :

1. Entertainment Software Association Foundation awards grant to FAS for immune attack
2. Genetic finding implicates innate immune system in major cause of blindness
3. Response to immune protein determines pathology of multiple sclerosis
4. Scripps research team sheds light on immune system suppression
5. Seemingly suicidal stunt is normal rite of passage for immune cells
6. Mercury pollution causes immune damage to harbor seals
7. A double-barreled immune cell approach for neuroblastoma
8. Lung airway cells activate vitamin D and increase immune response
9. Protein tubules free avian flu virus from immune recognition
10. Proteomics study yields clues as to how tuberculosis might be thwarting the immune system
11. Researcher tricks immune system in diabetic mice
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... BOSTON , Nov. 29, 2016 BioDirection, ... rapid point-of-care products for the objective detection of concussion ... the company has successfully completed a meeting with the ... company,s Tbit™ blood test Pre-Submission Package. During the meeting ... Tbit™ system as a precursor to commencement of a ...
(Date:11/28/2016)... -- "The biometric system market projected ... biometric system market is in the growth stage and ... The biometric system market is expected to be valued ... of 16.79% between 2016 and 2022. Government initiative in ... smartphones, rising use of biometric technology in financial institutes ...
(Date:11/22/2016)... --  MedNet Solutions , an innovative SaaS-based eClinical technology ... is pleased to announce that the company has been ... Awards as "Most Outstanding in eClinical Solutions" for ... recognition and growth for MedNet, which has effectively supported ... iMedNet ™ , MedNet,s flagship eClinical technology ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... ... December 07, 2016 , ... ... program for SmartBiome -- a novel metagenomic deep-sequencing research platform. SmartBiome combines ... detection of hundreds of different genes. The selective early access program is ...
(Date:12/6/2016)... ... December 06, 2016 , ... The ... asking the Federal Drug Administration (FDA) to consider OA as a serious disease. ... concerned about the growing population of OA patients, many of whom may experience ...
(Date:12/6/2016)... 6, 2016 According to a new market ... (Polymer, Glass, Silicon), Application (Genomics, Proteomics, Capillary Electrophoresis, POC, Clinical, Environmental, ... global market is projected to reach USD 8.78 Billion by 2021 ... during the forecast period (2016 to 2021). ... ...
(Date:12/6/2016)... ON (PRWEB) , ... December ... ... or the “Company”), a company focused on discovery and development of precision ... candidates it is developing for Alzheimer’s disease (AD) inhibited the direct neurotoxic ...
Breaking Biology Technology: