Navigation Links
Immune system compromised during spaceflight, study finds
Date:5/14/2010

Tucson, Ariz. -- Astronauts are known to have a higher risk of getting sick compared to their Earth-bound peers. The stresses that go with weightlessness, confined crew quarters, being away from family and friends and a busy work schedule - all the while not getting enough sleep - are known to wreak havoc on the immune system.

A research group led by immunobiologist Ty Lebsack at the University of Arizona has discovered that spaceflight changes the activity of genes controlling immune and stress response, perhaps leading to more sickness.

Between spaceflight affecting a crew's susceptibility to infections and previous observations of sickness-causing microbes thriving in a near-zero gravity environment, long journeys to far-away destinations such as Mars pose a big challenge to manned space missions.

"Taken together, our results hint at the possibility that an astronaut's immune system might be compromised in space," said Lebsack of the UA's department of immunobiology in the College of Medicine.

Lebsack and his colleagues focused their study on the thymus gland, the organ that serves as a "factory" and "training academy" for T-cells that are key players of the immune system. They compared gene-expression patterns in thymuses from four healthy mice that had spent 13 days aboard NASA's STS-118 Endeavor Space Shuttle to those from an equal number of control mice on the ground.

Their finding: 970 individual genes in the thymus of space-flown mice were up or down-regulated by a 1.5 fold change or greater. When these changes were averaged, 12 genes in the thymus tissue of all four space-flown mice were significantly up or down-regulated. "The altered genes we observed were found to primarily affect signaling molecules that play roles in programmed cell death and regulate how the body responds to stress," Lebsack said.

Programmed cell death plays an important role in a functioning body, for example in the disposal of cells that are no longer needed or damaged beyond repair. However, cell death must be tightly regulated in the immune system to ensure the process does not get out of hand.

"Many of the genes whose activity was down-regulated in the space-flown mice play important roles in maintaining that balance," Lebsack said. "Potentially, you could get more cell death aboard a spacecraft because of these differences."

The results fit in with experiments carried out on the ground to study how microgravity affects immune cells. In these experiments, scientists mimicked weightlessness using clinostats - apparatuses that slowly rotate the study object so the Earth's gravitational pull is never perceived as coming from one consistent direction.

"Previous studies with cell cultures in clinostats showed increased cell death in T-cells when you take away the gravity stimulus," said Lebsack, "so it was a logical step to test whether we find the same effects in animals exposed to an actual lack of gravity."

"We observed an overall pattern about the genes whose expression was changed by space flight: All of them are involved, in one way or another, in the development, control and programmed cell death of immune cells."

This study represents the first use of microarray technology to investigate gene expression in thymus tissue of space-flown mice, according to the authors. Complex research undertakings like this require specialists combining their different areas of expertise.

Lebsack worked with research specialist Jose Munoz-Rodriguez at the Arizona Genomics Core Microarray Facility to compare and analyze the activity levels of thousands of genes in thymus tissue from the space-flown mice and the control group. The vast amount of data generated in this process were then processed with input from David Mount, who heads the Informatics/Bioinformatics Shared Service, and graduate student Ann Manziello, who is a co-author on the study. Both facilities are housed in the Arizona Cancer Center.


'/>"/>

Contact: Daniel Stolte
stolte@email.arizona.edu
520-626-4402
University of Arizona
Source:Eurekalert  

Related biology news :

1. Bursts of waves drive immune system soldiers toward invaders
2. Key to out-of-control immune response in lung injury found
3. Flies can turn off their immune response
4. How the plant immune system can drive the formation of new species
5. Auto immune response creates barrier to fertility; could be a step in speciation
6. Immune police recognize good and bad guys in the body
7. Agent that triggers immune response in plants is uncovered
8. Immune cells promote blood vessel formation in mouse endometriosis
9. Influenza vaccine causes weaker immune response for children of rural Gabon than in semi-urban areas
10. The PIN codes of the immune system can be hacked
11. Pathogens use previously undescribed mechanism to sabotage host immune system
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Immune system compromised during spaceflight, study finds
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... (PRWEB) , ... May 23, ... ... offer an unlimited source of human cardiovascular cells for research and the ... methods makes it possible to generate large numbers of cardiomyocytes (hPSC-CMs). Due ...
(Date:5/23/2017)... ... May 22, 2017 , ... NetDimensions ... in the Aragon Research Globe™ for Corporate Learning, 2017. , Aragon Research defines ... market demand, and effectively perform against those strategies. NetDimensions’ ranking as a Leader ...
(Date:5/23/2017)... ... May 23, 2017 , ... Vortex Biosciences , ... “Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology ” in Nature ... a collaboration with Dr. Dino Di Carlo and Dr. Matthew Rettig at the University ...
(Date:5/23/2017)... ... 23, 2017 , ... Kathy Goin is joining myClin ... brings years of expertise in establishing and leading clinical operations at Sponsors including ... occupational therapist, through a variety of leadership roles in Clinical Operations, to her ...
Breaking Biology Technology: