Navigation Links
Immune cells promote blood vessel formation in mouse endometriosis
Date:10/18/2007

A discovery in mice of immune cells that promote the formation of new blood vessels could lead to new treatments for endometriosis, a painful condition associated with infertility that affects up to 15 percent of women of reproductive age.

The formation of new blood vessels, or angiogenesis, is known to encourage the growth of tumors and endometriosis lesions. A team led by Ofer Fainaru, MD, PhD, a research associate in the Vascular Biology Program at Children's Hospital Boston and Harvard Medical School, found that dendritic cellshighly specialized immune cellshelp trigger angiogenesis in a mouse model of endometriosis. Their findings were published online last month in the FASEB journal. Judah Folkman, MD, director of Childrens Vacular Biology Program, who helped found the field of angiogenesis, was the papers senior author.

Endometriosis occurs when endometrium, a tissue normally found in the inner lining of the uterus, grows elsewhere in the bodymost commonly in the abdominal cavity. The misplaced endometrial tissue begins as small lesions, or masses, but once blood vessels are recruited, the lesions grow larger and respond to female hormones, resulting in inflammation, cyclic pelvic pain, and infertility.

In the mouse model, the researchers observed that dendritic cells infiltrate endometriosis lesions, and near the sites where they invade, new blood vessels form. Injecting mice with excess dendritic cells caused their lesions to gain more blood vessels and to grow larger.

The researchers also found that dendritic cells have a strikingly similar effect on intra-abdominal tumors.

When the researchers grew dendritic cells together with endothelial cellsthe cells that line blood vessel wallsthe endothelial cells migrated towards the dendritic cells. The team hypothesizes that dendritic cells, after embedding in a new lesion or tumor, act like foremen on a building team: they call in, direct and support endothelial cells that build the new blood vessels.

"We believe that targeting dendritic cells may prove to be a promising strategy for treating conditions dependent on angiogenesis, such as endometriosis and cancer," says Fainaru. But first, the team must demonstrate that dendritic cells are essentialthat without these cells in mice, new blood vessels do not form.

"Our next step would be to look for specific dendritic cell inhibitors that could have the potential to block angiogenesis in these conditions," says Fainaru.

The team hopes to develop cell-specific therapy for angiogenesis-dependent diseases that will be more effective and less toxic than current treatments. Currently, the most effective treatment for endometriosis is surgically removing the lesions, but this does not prevent them from growing backas large and symptomatic as before. If dendritic cells are indeed ringmasters and not sideliners in new blood vessel growth, locally knocking them out just after an initial surgery, or altering them in some way, could render the lesions tiny and harmless.

Similarly, potential dendritic-cell inhibitors, when added to other agents that stop new blood vessels from forming, could enhance doctors ability to choke off growing tumors, Fainaru adds.


'/>"/>

Contact: Bess Andrews
elizabeth.andrews@childrens.harvard.edu
617-919-3110
Children's Hospital Boston
Source:Eurekalert

Related biology news :

1. Fox Chase Cancer Center scientists identify immune-system mutation
2. NYU Study Reveals How Brains Immune System Fights Viral Encephalitis
3. Genetically modified natural killer immune cells attack, kill leukemia cells
4. Studies reveal methods viruses use to sidestep immune system
5. Jumping gene helps explain immune systems abilities
6. Scientists solve structure of key protein in innate immune response
7. Rats infected as newborns grew up vulnerable to memory problems during an immune challenge
8. NYU study reveals how brains immune system fights viral encephalitis
9. Chemists identify immune system mechanism for methamphetamine binges
10. Multi-purpose protein regulates new protein synthesis and immune cell development
11. Genetically Modified Natural Killer Immune Cells Attack, Kill Leukemia Cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
(Date:3/28/2017)... India , March 28, 2017 ... IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), Software ... Vertical, and Region - Global Forecast to 2022", published ... Billion in 2016 and is projected to reach USD ... between 2017 and 2022. The base year considered for ...
(Date:3/24/2017)... , March 24, 2017 The Controller General ... Controller Mr. Abdulla Algeen have received the prestigious international IAIR ... Continue Reading ... ... picture) and Deputy Controller Abdulla Algeen (small picture on the right) have ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... Diego, CA (PRWEB) , ... May 23, 2017 , ... ... matrix of polymeric molecules, can cause diverse pathologies ranging from food poisoning and catheter ... impact of biofilms is in the tens of billions of dollars per year, there ...
(Date:5/22/2017)... ... May 22, 2017 , ... Stratevi, a boutique firm that partners with healthcare ... has opened an office in downtown Boston at 745 Atlantic Ave. , “We ... to generate evidence on the value they provide, not just to patients, but also ...
(Date:5/21/2017)... ... May 19, 2017 , ... ... educational conference of the American Association of Bioanalysts (AAB) and the College of ... Houston. The conference reinforces AAB’s commitment to excellence in clinical laboratory services and ...
(Date:5/19/2017)... ... May 19, 2017 , ... ... Academic researchers with technologies ripe for commercialization, and who are affiliated with ... are encouraged to submit proposals. QED, now in its tenth round, is the ...
Breaking Biology Technology: