Navigation Links
Imiquimod, an immune response modifier, is dependent on the OGF-OGFr signaling pathway
Date:7/24/2008

Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the efficacy of imiquimod, a clinically important immune response modifier with potent antiviral and antitumor activity, is dependent on the Opioid Growth Factor (OGF)-OGF receptor (OGFr) axis for its action. This discovery, reported in the August 08 issue of Experimental Biology and Medicine, provides new insights into a widely used drug that may lead to development of new agents that will enhance effectiveness and attenuate side-effects.

Imiquimod and resiquimod are imidazoquinoline compounds. Imiquimod (Aldara, R-837, S26308), the best characterized and most widely used, is highly efficacious in the treatment of external genital and anal warts, basal cell carcinoma, actinic keratoses, Kaposi's sarcoma, chronic hepatitis C infection, and intraepithelial carcinoma. Therefore, the underlying mechanism of imiquimod action is of clinical importance. Imiquimod has been reported to be a toll-like receptor-7 agonist, and its anti-tumor effect exerted by modification of the immune response and stimulation of apoptosis. The mechanism of imiquimod on cell proliferation is unclear.

The research team, led by Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with a pre-doctoral student Renee N. Donahue, in the Department of Neural & Behavioral Sciences and collaborator Moshe Rogosnitzky of MedInsight explored mechanisms responsible for the remarkable clinical action of this class of drugs. Specifically, using tissue culture models, the investigators found that imidazoquinolines upregulate OGFr which in turn stimulates the interaction of the OGF-OGFr axis. This native, tonically active inhibitory pathway is known to regulate cell proliferation by modulating cyclin dependent kinase inhibitors, resulting in a retardation of cells at the G1-S interface of the cell cycle. Neutralization of OGF or knockdown of OGFr by siRNA technology eliminated the inhibitory effects of imidazoquinolines on cell replication. "Thus our data," Dr. Zagon said, "brings a paradigm shift to our thinking about a drug widely used in the clinics. Rather than imiquimod activity being mediated by induction of various cytokines, including interferon (IFN)-α, IFN-γ, tumor necrosis factor-α (TNFα) interleukin (IL)-1α, and IL-12 as currently thought, an entirely new pathway - native to body chemistry - has been discovered to regulate cell proliferation by imidazoquinolines." Co-author, Moshe Rogosnitzky adds: "The elucidation of imiquimod's immune-independent mechanism of action in cancer also creates exciting new therapeutic possibilities for a number of non-cancer conditions, and these are now being further explored. Such studies could lead to new off-label applications for imiquimod as well as development of imiquimod analogues and unique combination therapies." Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine stated "Through decades of elegant and ground-breaking work, Zagon and colleagues have identified the role of met-enkephalin (the opioid growth factor OGF) and the OGF receptor in regulating cell proliferation. The current study demonstrates that the mechanism of imidazoquinoline activity is via OGF and OGFr which will have a profound impact on its use as a therapeutic for cancer and many other non-cancerous disorders."


'/>"/>

Contact: Dr. Ian S. Zagon
isz1@psu.edu
717-531-8650
Society for Experimental Biology and Medicine
Source:Eurekalert

112

GOOD

Related biology news :

1. Viral recombination another way HIV fools the immune system
2. Video released of rapid Alzheimers improvement after new immune-based treatment
3. Researchers hack final part of the immune system code
4. Control switches found for immune cells that fight cancer, viral infection
5. A single mechanism for hypertension, insulin resistance and immune suppression
6. Pitt receives $2.5 million to simulate and analyze brain, immune system activity
7. New findings on immune system in amphibians
8. UCLA researchers develop new PET scanning probe that will allowing monitoring of the immune system
9. Retraining immune cells to kill tumors
10. Sugar linkage could lead to better treatment for autoimmune diseases
11. Effective cancer immune therapy through order in the blood vessels
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/10/2016)... 10, 2016   Unisys Corporation (NYSE: UIS ... (CBP) is testing its biometric identity solution at the ... to help identify certain non-U.S. citizens leaving the country. ... designed to help determine the efficiency and accuracy of using ... and will run until May 2016. --> ...
(Date:3/9/2016)... -- Nigeria . Recently, the ... public service employees either did not exist with their ...    --> Nigeria . Recently, ... 23,000 public service employees either did not exist with ... unlawfully.    --> DERMALOG, the biometrics innovation ...
(Date:3/8/2016)... RALEIGH, N.C. , March 8, 2016 /PRNewswire/ ... biometric sensor technology, today announced it has secured ... led by GII Tech, a new venture fund ... LLC, with additional participation from existing investors TDF ... use the funds to continue its triple-digit growth ...
Breaking Biology News(10 mins):
(Date:5/5/2016)... ... May 05, 2016 , ... American ... two additional patents, U.S. Patent Nos. 9,322,133 and 9,322,134, to API and its ... nanocellulose as well as hydrophobic nanocellulose compositions. In addition to these patents ...
(Date:5/4/2016)... ... May 04, 2016 , ... Proove Biosciences, Inc. , the commercial ... with McGill University . The partnership is designed to advance research in pain ... help patients in pain. With the new agreement, researchers at Proove Biosciences are able ...
(Date:5/4/2016)... York, NY (PRWEB) , ... May 04, 2016 ... ... has leveraged recent innovations in biotechnology to help treat hormonal and stress related ... loss, Nutrafol® has captured the hearts of key opinion leaders in the medical ...
(Date:5/3/2016)... ... 03, 2016 , ... Flagship Biosciences, the leader in ... Board of Directors. Dr. Gillett recently retired from Charles River Laboratories (CRL), where, ... Scientific Officer. A board-certified veterinary pathologist, Dr. Gillett joined Charles River in 1999 ...
Breaking Biology Technology: