Navigation Links
Imaging in depth: 3-dimensional microscopy featured in Cold Spring Harbor Protocols
Date:11/1/2010

COLD SPRING HARBOR, N.Y. (Mon., Nov. 1, 2010) -- Imaging has rapidly become a defining tool of the current era in biological research. But finding the right method and optimizing it for data collection can be a daunting process, even for an established imaging laboratory. Cold Spring Harbor Protocols is one of the world's leading sources for detailed technical instruction for implementation of imaging methods (http://cshprotocols.cshlp.org/cgi/collection/imaging_microscopy_general), and the November issue (http://cshprotocols.cshlp.org/TOCs/toc11_10.dtl) features articles detailing standard and cutting-edge laboratory techniques.

The confocal microscope is a workhorse of the modern life science laboratory. Its popularity stems from its ability to permit volume objects to be imaged and rendered in three dimensions. But the confocal microscope itself does not produce three-dimensional images; in fact, it only images very thin sections of a specimen that lie within its focal region. To produce a three-dimensional image, a series of thin optical sections are collected, and computer processing is used to combine them into a volumetric rendering. In "Spinning-Disk Microscopy Systems," Oxford University's Tony Wilson (http://acara.eng.ox.ac.uk/som/SOMG_home.html) reviews the many methods for producing optical sections, of which the confocal optical system is just one. He also describes a number of convenient methods of implementation that can lead to, among other things, real-time image formation. The article is freely available on the journal's website (http://cshprotocols.cshlp.org/cgi/content/full/2010/11/pdb.top88).

While confocal microscopy relies on optical sectioning, array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of tissue are cut using an ultramicrotome, and attached in order to a glass coverslip. These coverslips are then stained as desired and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The thin sections allow for rapid staining and imaging and the array format allows much of the process to be automated. Stephen J. Smith and colleagues from Stanford University (http://smithlab.stanford.edu/Smithlab/Home.html) present "Array Tomography: High-Resolution Three-Dimensional Immunofluorescence," a guide to this technique that allows for visualizing previously inaccessible features of tissue structure and molecular architecture. The article is freely available on the journal's website (http://cshprotocols.cshlp.org/cgi/content/full/2010/11/pdb.top89).

Both articles are adapted from the forthcoming Imaging: A Laboratory Manual (http://www.cshlpress.com/link/imagingp.htm). Available later this month, the collection is the cornerstone of a new laboratory manual series, designed as an essential guide for investigators who need these visualization techniques.


'/>"/>

Contact: David Crotty
crotty@cshl.edu
516-422-4007
Cold Spring Harbor Laboratory
Source:Eurekalert

Related biology news :

1. SNM releases new fact sheet on breast cancer and molecular imaging
2. Cheskin Added Value EVP Lee Shupp Discusses Evolving Dynamics of Consumers and Imaging Tech at 6Sight
3. MU brain imaging center provides research for autism, schizophrenia and Parkinsons disease
4. Similarities in imaging the human body, Earths crust focus of conference at UH
5. UNC expands brain imaging study of infants at risk for autism
6. Studies on imaging and tracking transplanted cells
7. Fattysaurus or thinnysaurus? How dinosaurs measure up with laser imaging
8. SNM Symposium on Multimodality Cardiovascular Molecular Imaging
9. Ultrasound imaging now possible with a smartphone
10. First neuroimaging study examining motor execution in children with autism reveals new insights
11. Lyncean Technologies Inc. receives $1.2 M from NCRR to develop new imaging technique
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... MILAN , March 24, 2017 The Controller ... Deputy Controller Mr. Abdulla Algeen have received the prestigious international ... Continue Reading ... ... small picture) and Deputy Controller Abdulla Algeen (small picture on the right) ...
(Date:3/23/2017)... report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based and Touchless), Product ... by MarketsandMarkets, the market is expected to be worth USD 18.98 billion by ... Continue Reading ... ...      (Logo: http://photos.prnewswire.com/prnh/20160303/792302) ...
(Date:3/22/2017)...   Neurotechnology , a provider of high-precision ... the release of the SentiVeillance 6.0 ... recognition using up to 10 surveillance, security and ... new version uses deep neural-network-based facial detection and ... a Graphing Processing Unit (GPU) for enhanced speed. ...
Breaking Biology News(10 mins):
(Date:7/16/2017)... , ... July 16, 2017 , ... ... and analytical instruments announced the launch of its new line of Rocking and ... rocking and waving shaker models (both analog and digital) for laboratory applications in ...
(Date:7/14/2017)... ... July 14, 2017 , ... ... company . Sonic Manufacturing Technologies has installed a solar system on its roof ... three-year period,” the President of Sonic, Kenneth Raab stated. The company’s proud history ...
(Date:7/14/2017)... Denville, USA/ Martinsried, Germany (PRWEB) , ... July ... ... a newly developed standardized solution for sample preparation of proteins to clean peptides ... the Diagenode Bioruptor® sonication system. , The PreOmics iST Kit is based ...
(Date:7/13/2017)... ... July 13, 2017 , ... In’Tech Medical SAS ... announced today the completion of a major transaction with Eurazeo PME. The reputable ... growth. The alliance fuels In’Tech Medical’s service offerings while leveraging the company’s manufacturing ...
Breaking Biology Technology: