Navigation Links
Illinois-UC Berkeley discovery turns seaweed into biofuel in half the time
Date:8/29/2011

URBANA University of Illinois scientists have engineered a new strain of yeast that converts seaweed into biofuel in half the time it took just months ago. That's a process that's important outside the Corn Belt, said Yong-Su Jin, a University of Illinois assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

"The key is the strain's ability to ferment cellobiose and galactose simultaneously, which makes the process much more efficient," Jin said.

Red seaweed, hydrolyzed for its fermentable sugars, yields glucose and galactose. But yeast prefers glucose and won't consume galactose until glucose is gone, which adds considerable time to the process, he said.

The new procedure hydrolyzes cellulose into cellobiose, a dimeric form of glucose, then exploits a newly engineered strain of Saccharomyces cerevisiae capable of fermenting cellobiose and galactose simultaneously.

The team introduced a new sugar transporter and enzyme that breaks down cellobiose at the intracellular level. The result is a yeast that consumes cellobiose and galactose in equal amounts at the same time, cutting the production time of biofuel from marine biomass in half, he said.

The research, performed with project funding from the Energy Biosciences Institute, included team members Suk-Jin Ha, Qiaosi Wei, and Soo Rin Kim of the University of Illinois, Urbana-Champaign, and Jonathan M. Galazka and Jamie Cate of the University of California, Berkeley.

Jin compared the previous process to a person taking first a bite of a cheeseburger, then a bite of pickle. The process that uses the new strain puts the pickle in the cheeseburger sandwich so both foods are consumed at the same time.

Co-fermenting the two sugars also makes for a healthier yeast cell, he said.

"It's a faster, superior process. Our view is that this discovery greatly enhances the economic viability of marine biofuels and gives us a better product," he added.

Is seaweed a viable biofuel? Jin and his colleagues are using a red variety (Gelidium amansii) that is abundant on the coastlines of Southeast Asia. In island or peninsular nations that don't have room to grow other biofuel crops, using seaweed as a source of biofuels just makes good sense, he noted.

But biofuels made from marine biomass also have some advantages over fuels made from other biomass crops, he said.

"Producers of terrestrial biofuels have had difficulty breaking down recalcitrant fibers and extracting fermentable sugars. The harsh pretreatment processes used to release the sugars also result in toxic byproducts, inhibiting subsequent microbial fermentation," he said.

Jin cited two other reasons for use of seaweed biofuels. Production yields of marine plant biomass per unit area are much higher than those of terrestrial biomass. And rate of carbon dioxide fixation is much higher in marine biomass, making it an appealing option for sequestration and recycling of carbon dioxide.


'/>"/>

Contact: Phyllis Picklesimer
p-pickle@illinois.edu
217-244-2827
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Source:Eurekalert

Related biology news :

1. UC Berkeley launches Synthetic Biology Institute to advance research in biological engineering
2. Berkeley Lab researchers make first perovskite-based superlens for the infrared
3. Getting organized: Berkeley Lab study shows how breast cell communities organize into breast tissue
4. Berkeley Lab researchers illuminate laminins role in cancer formation
5. Berkeley Lab to build DOE advanced biofuels user facility
6. Berkeley scientists find new way to get physical in the fight against cancer
7. Berkeley Lab researchers participate in Homeland Security study of subway airflow
8. Berkeley Lab lends expertise to India to promote energy efficiency
9. Nanyang Technological University and University of California, Berkeley pursue research alliance
10. Fossil discovery represents new milestone in early mammal evolution
11. Genomatix, USU and HJF execute a CRADA: Prostate cancer prognostic marker discovery by NGS
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/15/2016)... , June 15, 2016 ... report titled "Gesture Recognition Market by Application Market - Global Industry ... - 2024". According to the report, the  global gesture ... in 2015 and is estimated to grow at ... billion by 2024.  Increasing application of ...
(Date:6/2/2016)... The Department of Transport Management (DOTM) of ... Dollar project, for the , Supply and Delivery ... IT Infrastructure , to Decatur ... Identity Management Solutions. Numerous renowned international vendors participated in the ... was selected for the most compliant and innovative solution. The ...
(Date:5/20/2016)... May 20, 2016  VoiceIt is excited to ... VoicePass. By working together, VoiceIt and ... VoiceIt and VoicePass take slightly different approaches to ... both security and usability. ... this new partnership. "This marketing and ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... Mass. , June 23, 2016   ... development of novel compounds designed to target cancer ... napabucasin, has been granted Orphan Drug Designation from ... the treatment of gastric cancer, including gastroesophageal junction ... stemness inhibitor designed to inhibit cancer stemness pathways ...
(Date:6/23/2016)... June 23, 2016  The Prostate Cancer Foundation (PCF) is pleased ... and faster cures for prostate cancer. Members of the Class of 2016 were ... Read More About the Class of 2016 PCF Young ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case ... Denmark detail how a patient who developed lymphedema after being treated for breast cancer ... could change the paradigm for dealing with this debilitating, frequent side effect of cancer ...
Breaking Biology Technology: