Navigation Links
If corn is biofuels king, tropical maize may be emperor
Date:10/16/2007

When University of Illinois crop scientist Fred Below began growing tropical maize, the form of corn grown in the tropics, he was looking for novel genes for the utilization of nitrogen fertilizer and was hoping to discover information that could be useful to American corn producers.

Now, however, it appears that maize itself may prove to be the ultimate U.S. biofuels crop.

Early research results show that tropical maize, when grown in the Midwest, requires few crop inputs such as nitrogen fertilizer, chiefly because it does not produce any ears. It also is easier for farmers to integrate into their current operations than some other dedicated energy crops because it can be easily rotated with corn or soybeans, and can be planted, cultivated and harvested with the same equipment U.S. farmers already have. Finally, tropical maize stalks are believed to require less processing than corn grain, corn stover, switchgrass, Miscanthus giganteus and the scores of other plants now being studied for biofuel production.

What it does produce, straight from the field with no processing, is 25 percent or more sugar -- mostly sucrose, fructose and glucose.

"Corn is a short-day plant, so when we grow tropical maize here in the Midwest the long summer days delay flowering, which causes the plant to grow very tall and produce few or no ears," says Below. Without ears, these plants concentrate sugars in their stalks, he adds. Those sugars could have a dramatic affect on Midwestern production of ethanol and other biofuels.

According to Below, "Midwestern-grown tropical maize easily grows 14 or 15 feet tall compared to the 7-1/2 feet height that is average for conventional hybrid corn. It is all in these tall stalks," Below explains. "In our early trials, we are finding that these plants build up to a level of 25 percent or higher of sugar in their stalks.

This differs from conventional corn and other crops being grown for biofuels in that the starch found in corn grain and the cellulose in switchgrass, corn stover and other biofuel crops must be treated with enzymes to convert them into sugars that can be then fermented into alcohols such as ethanol.

Storing simple sugars also is more cost-effective for the plant, because it takes a lot of energy to make the complex starches, proteins, and oils present in corn grain. This energy savings per plant could result in more total energy per acre with topical maize, since it produces no grain.

"In terms of biofuel production, tropical maize could be considered the 'Sugarcane of the Midwest',"Below said. "The tropical maize we're growing here at the University of Illinois is very lush, very tall, and very full of sugar."

He added that his early trials also show that tropical maize requires much less nitrogen fertilizer than conventional corn, and that the stalks actually accumulate more sugar when less nitrogen is available. Nitrogen fertilizer is one of major costs of growing corn.

He explained that sugarcane used in Brazil to make ethanol is desirable for the same reason: it produces lots of sugar without a high requirement for nitrogen fertilizer, and this sugar can be fermented to alcohol without the middle steps required by high-starch and cellulosic crops. But sugarcane cant be grown in the Midwest.

The tall stalks of tropical maize are so full of sugar that producers growing it for biofuel production will be able to supply a raw material at least one step closer to being turned into fuel than are ears of corn.

"And growing tropical maize doesn't break the farmers' rotation. You can grow tropical maize for one year and then go back to conventional corn or soybeans in subsequent years," Below said. "Miscanthus, on the other hand, is thought to need a three-year growth cycle between initial planting and harvest and then your land is in Miscanthus. To return to planting corn or soybean necessitates removing the Miscanthus rhizomes.

Below is studying topical maize along with doctoral candidate Mike Vincent and postdoctoral research associate Matias Ruffo, and in conjunction with U of I Associate Professor Stephen Moose. This latest discovery of high sugar yields from tropical maize became apparent through cooperative work between Below and Moose to characterize genetic variation in response to nitrogen fertilizers.

Currently supported by the National Science Foundation, these studies are a key element to developing maize hybrids with improved nitrogen use efficiency. Both Below and Moose are members of Illinois Maize Breeding and Genetics Laboratory (http://imbgl.cropsci.uiuc.edu/tradition.html), which has a long history of conducting research that identifies new uses for the maize crop.

Moose now directs one of the longest-running plant genetics experiments in the world, in which more than a century of selective breeding has been applied to alter carbon and nitrogen accumulation in the maize plant. Continued collaboration between Below and Moose will investigate whether materials from these long term selection experiments will further enhance sugar yields from tropical maize.


'/>"/>

Contact: Marilyn Upah Bant
upahbant@uiuc.edu
217-333-9273
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. New molecule may aid in production of biofuels and fungi-resistant plants
2. Biofuels can replace about 30 percent of fuel needs with significant research and policy effort
3. Biofuels researcher searches for new sources
4. New biofuels process promises to meet all US transportation needs
5. ConocoPhillips establishes $22.5M biofuels research program at Iowa State
6. Finding Cures For Tropical Diseases: Is Open Source An Answer?
7. An (ecological) origin of species for tropical reef fish
8. Tropical Deforestation affects rainfall in the U.S. and around the globe
9. Birds and bats sow tropical seeds
10. Tropical dry forests receive international recognition
11. Scientists must offer solutions for conserving tropical forests in a rapidly changing world
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
(Date:4/18/2017)... 18, 2017  Socionext Inc., a global expert in SoC-based imaging ... server, the M820, which features the company,s hybrid codec technology. A ... Tera Probe, Inc., will be showcased during the upcoming Medtec Japan ... at the Las Vegas Convention Center April ... Click here for ...
(Date:4/11/2017)... 2017 Research and Markets has announced the ... to their offering. ... eye tracking market to grow at a CAGR of 30.37% during ... Market 2017-2021, has been prepared based on an in-depth market analysis ... and its growth prospects over the coming years. The report also ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... June 22, 2017 , ... For ... has produced a Spotlight series on “Cell Therapy Regulation” for ... by leading experts on the unique regulatory challenges of stem cell medical research. ...
(Date:6/20/2017)... ... June 20, 2017 , ... CTNext , Connecticut’s ... has formed a Higher Education Entrepreneurship Advisory Committee to implement the recommendations of ... other high-ranking representatives from 35 higher education institutions across the state over the ...
(Date:6/20/2017)... NJ (PRWEB) , ... June 20, 2017 , ... Do ... makes the transition from being a trusted supplier in the weighing industry, to extending ... cell extractions, ELISA essays, enzyme reactions, immunoassays, hybridizations and more, allowing for its ...
(Date:6/19/2017)... ... June 19, 2017 , ... A colony of healthy honey ... and tissues by delivering pollen and nectar containing nutrients necessary for growth and survival. ... healthy. , Many recent indicators point to a decline in honey bee health. Sick ...
Breaking Biology Technology: