Navigation Links
Icy calculations on a hot topic
Date:9/10/2007

University of Utah mathematicians have arrived at a new understanding of how salt-saturated ocean water flows through sea ice a discovery that promises to improve forecasts of how global warming will affect polar icepacks.

In the current issue of the journal Geophysical Research Letters, math Professor Ken Golden and colleagues show that brine moving up or down through floating sea ice follows universal transport properties.

It means that almost the exact same formulas describing how water flows through sedimentary rocks in the Earth's crust apply to brine flow in sea ice, even though the microstructural details of the rocks are quite different from sea ice, says Golden, who currently is on an Australian research ship in Antarctica.

The study suggests similar porous materials including ice on other worlds, such as Jupiters icy ocean-covered moon Europa should follow the same rules, he adds.

Golden has made several trips to Antarctica and the Arctic for his studies.

The American Geophysical Union, which publishes the journal carrying Goldens study, says sea ice is important because it is both an indicator and regulator of climate change; its thinning and retreat show the effects of climate warming, and its presence greatly reduces solar heating of the polar oceans.

Sea ice also is a primary habitat for microbial communities, sustaining marine food webs, the group adds. The permeability of sea ice and its ability to transport brine are important to many problems in geophysics and biology, yet remain poorly understood.

The AGU says Goldens study presents a unified picture of sea ice permeability, and how that permeability to brine flow varies with the temperature and salinity of the ice.

Icy Math and Climate Change

One of the most important aspects of the polar sea ice packs is the role they play in Earth's albedo whether Earth absorbs or reflects incoming solar radiation, says Golden. White sea ice reflects; the ocean absorbs. In the late spring, melt ponds [atop the ice] critically affect the albedo of the polar ice packs. The drainage of these melt ponds is again largely controlled by the permeability of the ice.

The Intergovernmental Panel on Climate Changes predictions that the summer Arctic ice pack may disappear sometime during 2050-2100 depend in part on these types of considerations, he adds. Now that we have a much firmer understanding of how permeability depends on the variables of sea ice, namely temperature and salinity, our results can help to provide more realistic representations of sea ice in global climate models, helping to hone the predictions for world climate and the effects of warming.

The results can also help in understanding how polar ecosystems respond to climate change, Golden says. Biological processes in the polar regions depend on brine flow through sea ice. For example, the rich food webs in the polar oceans are based on algae and bacteria living in the ice, and their nutrient intake is controlled by brine flow.

In the Antarctic, ice formed from flooding of ice surfaces is an important component of the ice pack, and this formation is dependent on brine flow, he adds. Brine drainage out of sea ice and the subsequent formation of Antarctic bottom water is an important part of the worlds oceans.

Golden says the formulas that describe brine flow through sea ice and groundwater flow through sediments arose from abstract solid-state physics models used to describe atomic-scale phenomena in metals.

These formulas exhibit universality, meaning that the end result doesn't depend on the details of the model or system, only on the dimension of the system, he says. While large classes of abstract models obey this principle, real materials often do not. So it is surprising that a complex, real material like sea ice actually obeys these formulas.

To conduct the study, Golden and colleagues analyzed sea ice and modeled or simulated its behavior mathematically, and also made field and laboratory measurements of sea ice, including using X-rays to make CT-scan images of how the microscopic pore structure of ice varies with temperature.


'/>"/>

Contact: Lee Siegel
leesiegel@ucomm.utah.edu
801-581-8993
University of Utah
Source:Eurekalert

Related biology news :

1. Topical treatment shown to inhibit HIV and herpes simplex virus infection
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... http://photos.prnewswire.com/prnh/20160606/375871LOGO ...
(Date:6/2/2016)... --  The Weather Company , an IBM Business (NYSE: ... in which consumers will be able to interact with IBM ... voice or text and receive relevant information about the product ... have long sought an advertising solution that can create a ... and valuable; and can scale across millions of interactions and ...
(Date:5/24/2016)... facilitates superior patient care by providing unparalleled technology to leaders of the medical imaging ... product recently added to the range of products distributed by Ampronix. Photo ... ... ... News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... STACS DNA Inc., ... Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field ... DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding ...
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a company ... to the medical community, has closed its Series A ... Nunez . "We have received a commitment ... capital we need to meet our current goals," stated ... us the runway to complete validation on the current ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... at the Pennsylvania Convention Center and will showcase its product’s latest features from ... also be presenting a scientific poster on Disrupting Clinical Trials in The Cloud ...
(Date:6/23/2016)...  Amgen (NASDAQ: AMGN ) today announced ... life sciences incubator to accelerate the development of new ... at QB3@953 was created to help high-potential life science ... early stage organizations - access to laboratory infrastructure. ... two "Amgen Golden Ticket" awards, providing each winner with ...
Breaking Biology Technology: