Navigation Links
ISU researchers find possible treatment for spinal muscular atrophy
Date:7/27/2009

AMES, Iowa - Spinal Muscular Atrophy is the second-leading cause of infant mortality in the world.

Ravindra Singh, associate professor in biomedical sciences at Iowa State University's College of Veterinary Medicine, would like to see Spinal Muscular Atrophy lose its high ranking and even slide off the list altogether.

Most Spinal Muscular Atrophy sufferers -- more than 95 percent -- have a mutated or deleted gene called Survival Motor Neuron 1 (SMN1) that doesn't correctly do its job of creating functional SMN proteins.

Singh's solution is to replace that poor-performing gene with another gene.

Humans need a certain level of SMN protein to ward off Spinal Muscular Atrophy.

When SMN1 fails to create functioning proteins, Spinal Muscular Atrophy is the result.

There is a gene already in humans that looks very much like SMN1, so much so that it's called SMN2. The SMN2 gene doesn't seem to serve any function that researchers can identify.

Singh has discovered a way of using SMN2 to produce the working SMN protein. When SMN2 makes enough SMN, it compensates for the mutated or malfunctioning SMN1 gene.

All proteins in human bodies are made by copying genes. This copy is called pre-mRNA.

Pre-mRNA then becomes mRNA by splicing out certain parts of the sequence that are non-coding, meaning they don't help the function of the gene.

These non-coding portions of the pre-mRNA are called intronic sequences, sometimes referred to as junk sequence because it is originally copied from junk DNA.

SMN2 normally doesn't produce normal protein because of the presence of a specific intronic sequence in the gene or DNA.

To make SMN2 behave as SMN1, Singh has introduced a small antisense oligonucleotide that blocks this specific intronic sequence.

When the intronic sequence is blocked, SMN2 produces normal proteins and acts, in effect, like SMN1.

"The significance of our work is that we have this stuff called junk DNA in SMN2," said Singh. "We found that we could get SNM2 to behave as SMN1 by introducing a small oligonucleotide. It is a very simple experiment if you think about it."

The resulting proteins are normal just like a regular cell - free from Spinal Muscular Atrophy.

"Our cells are healthy and survive," he said. "From that point of view, this is a major achievement."

Singh, along with his team Natalia Singh and Maria Shishimorova, both of Iowa State University's biomedical services department; Lu Cheng Cao, University of Massachusetts Medical School, Worcester; and Laxman Gangwani, Medical College of Georgia, Augusta, have their research highlighted as the cover story on this month's issue of the journal RNA Biology. Their research (link to research) is the most downloaded story on the RNA Biology page of the Web site Landes Bioscience.

Spinal Muscular Atrophy affects 1 in 6,000 to 1 in 10,000 children born every year. One in 40 people are carriers of the disease -- they don't have the symptoms, but could pass the disease to their children.

Most children born with the most severe type of SMA die within two years.

Using this junk sequence in SMN2 to restore the high levels of functional SMN protein could eliminate Spinal Muscular Atrophy caused by deletion or mutation in SMN1.

Singh believes this technology could also work treating other diseases.

"We know that Parkinson's disease, Alzheimer's disease, cystic fibrosis, multiple sclerosis and cancer all come from genes that are aberrantly spliced," he said.

"If this is a model disease, meaning we succeed in treating Spinal Muscular Atrophy, we will know how to correct splicing of other genes in other diseases," he said.


'/>"/>

Contact: Ravindra Singh
singhr@iastate.edu
515-294-8505
Iowa State University
Source:Eurekalert  

Related biology news :

1. Researchers capture bacterial infection on film
2. Researchers design first model motor nerve system thats insulated and organized like the human body
3. Iowa State University researchers develop process for surgical genetic changes
4. UCLA researchers discover new molecular pathway for targeting cancer, disease
5. Munich researchers discover new target for tailored antibiotics
6. Baylor researchers unravel mystery of DNA conformation
7. Researchers achieve major breakthrough with water desalination system
8. Researchers gain insight into mechanism underlying Huntingtons
9. Alzheimers disease drug treats traumatic brain injury, report GUMC researchers
10. UTSA infectious disease researchers advancing vaccine against Valley fever
11. Canadian researchers set to study impact of nanomaterials on aquatic ecosystems
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
ISU researchers find possible treatment for spinal muscular atrophy
(Date:4/3/2017)... April 3, 2017  Data captured by ... platform, detected a statistically significant association between ... to treatment and objective response of cancer ... to predict whether cancer patients will respond ... as well as to improve both pre-infusion potency ...
(Date:3/29/2017)... March 29, 2017  higi, the health IT company ... North America , today announced a Series ... acquisition of EveryMove. The new investment and acquisition accelerates ... tools to transform population health activities through the collection ... higi collects and secures data today on ...
(Date:3/24/2017)... -- Research and Markets has announced the addition of ... - Industry Forecast to 2025" report to their offering. ... The Global Biometric Vehicle ... around 15.1% over the next decade to reach approximately $1,580 million ... estimates and forecasts for all the given segments on global as ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... ... April 26, 2017 , ... WonderWorks, ... NASA to showcase the future of deep space exploration and inspire space enthusiasts. ... Orion spacecraft and includes a guest appearance by former Shuttle Astronaut Don Thomas. ...
(Date:4/26/2017)... (PRWEB) , ... April 26, 2017 , ... ... headlines and drive high-level conversations among healthcare industry stakeholders, the discussion surrounding the ... – taking place May 15-18, 2017 in Los Angeles, Calif. Hosted by the ...
(Date:4/25/2017)... April 25, 2017 Providence ... licensed its novel immune-modulating technology to an undisclosed global ... allergy. Tregitopes, pronounced T·rej·itopes, are a ... by EpiVax CEO Annie De Groot ... immunoglobulin G, an autoimmune disease therapy, Tregitopes are ...
(Date:4/24/2017)... NEW YORK , April 24, 2017  Dante Labs ... interpretation at only EUR 850 (ca. $900). While American individuals ... marks the first time Europeans can access WGS below EUR ... which are crucial to leveraging genetic information to make informed ... more. ...
Breaking Biology Technology: