Navigation Links
ISU researchers develop hybrid protein tools for gene cutting and editing

Ames - An Iowa State University team of researchers has developed a type of hybrid proteins that can make double-strand DNA breaks at specific sites in living cells, possibly leading to better gene replacement and gene editing therapies.

Bing Yang, assistant professor of genetics, development and cell biology, and his colleagues developed the hybrid protein by joining parts of two different bacterial proteins. One is called a TAL effector, which functions to find the specific site on the gene that needs to be cut, and the other is an enzyme called a nuclease that cuts the DNA strands.

Yang hopes the research will lead to the ability to modify genomes by cutting out defective or undesirable parts of DNA, or by replacing defective or undesirable gene segments with a functioning piece of replacement DNA - a process called homologous recombination.

Yang says that his hybrid proteins can be constructed to locate specific segments of the DNA in any type of organism.

"This breakthrough could eventually make it possible to efficiently modify plant, animal and even human genomes," said Yang. "It should be effective in a range of organisms."

The proteins work by binding onto the specific segment of DNA the researcher wants to change. Yang's proteins do this by reading the DNA sequence and finding the specific area to be cut.

Once the protein binds onto the DNA at the correct spot, the other half of Yang's protein then cuts the double-stranded DNA.

Bad or undesirable DNA can be resected (removed) and good or more desirable DNA can be introduced. When the DNA heals, the good DNA is included in the gene.

Yang started his research about a year ago after seeing the results of research by Adam Bogdanove, ISU associate professor of plant pathology, showing that TAL effectors use a very straightforward code to bind to a specific DNA sequence.

This discovery allowed Yang to predict exactly where the TAL effector nuclease will bind on the DNA to make the cut.

Another study had similar results.

The concept has also been proven by Bogdanove and Dan Voytas, collaborator in genetics, development and cell biology at Iowa State, and director of the Center for Genome Engineering at the University of Minnesota, Twin Cities.

The TAL effector-nuclease approach improves on tools currently available for genome modification. It should be faster and less expensive to make TAL effector nucleases, and easier to design them to recognize specific DAN sequences, according to Yang.

Yang's findings recently appeared in the online version of the journal Nucleic Acids Research. Voytas' and Bogdanove's study also appeared recently in the journal Genetics.

Voytas and Bogdanove were also able to show that the TAL effector part of the hybrid protein can be customized to target new DNA sequences.


Contact: Bing Yang
Iowa State University

Related biology news :

1. NC State researchers get to root of parasite genome
2. Researchers find animal with ability to survive climate change
3. Researchers find an essential gene for forming ears of corn
4. Researchers note differences between people and animals on calorie restriction
5. Researchers study acoustic communication in deep-sea fish
6. Researchers discover that growing up too fast may mean dying young in honey bees
7. Researchers study how pistachios may improve heart health
8. UI researchers find potentially toxic substance present in Chicago air
9. Researchers develop new self-training gene prediction program for fungi
10. Case Western Reserve University researchers track Chernobyl fallout
11. Childrens National researchers develop novel anti-tumor vaccine
Post Your Comments:
Related Image:
ISU researchers develop hybrid protein tools for gene cutting and editing
(Date:10/29/2015)... , Oct. 29, 2015   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... Tech Association (MHTA) as one of only three finalists ... "Software – Small and Growing" category. The Tekne Awards honor ... have shown superior technology innovation and leadership. ...
(Date:10/29/2015)... BOSTON , Oct. 29, 2015  Connected health ... phenomena driving the explosion of technology-enabled health and wellness, ... his new book, The Internet of Healthy ... apps, sensors or smartphones even existed, Dr. Kvedar, vice ... model of health care delivery, moving care from the ...
(Date:10/27/2015)... October 27, 2015 Munich, ... Gaze Mapping technology (ASGM) automatically maps data from mobile ... Glasses , so that they can be quantitatively ... Munich, Germany , October 28-29, 2015. ... data from mobile eye tracking videos created with ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... /CNW/ - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ... the quarter ended September 30, 2015. Amounts, unless ... presented under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of ... only value enriching for this clinical program, but ...
(Date:11/24/2015)... , November 24, 2015 ... market research report "Oligonucleotide Synthesis Market by Product & ... Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & ... by MarketsandMarkets, the market is expected to reach USD ... 2015, at a CAGR of 10.1% during the forecast ...
(Date:11/24/2015)...  Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General ... a.m. Israel time, at the law offices of ... 36 th Floor, Tel Aviv, Israel . ... Izhak Tamir to the Board of Directors; , election ... , approval of an amendment to certain terms of options granted to ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... Technologies, Inc., on being named to Deloitte's 2015 Technology Fast 500 list of ... OrthoAccel manufactures AcceleDent®, a FDA-cleared, Class II medical device that speeds up orthodontic ...
Breaking Biology Technology: