Navigation Links
Hungry microbes share out the carbon in the roots of plants
Date:10/18/2007

Sugars made by plants are rapidly used by microbes living in their roots, according to new research at the University of York, creating a short cut in the carbon cycle that is vital to life on earth.

The green leaves of plants use the energy of sunlight to make sugar by combining water with carbon dioxide from the atmosphere. This sugar fuels the plants growth, but scientists in the Universitys Department of Biology discovered that some of it goes straight to the roots to feed a surprising variety of microbes.

A study led by Professor Peter Young, of the Department of Biology at York and Dr Philippe Vandenkoornhuyse of the University of Rennes in France is published in the latest issue of the Proceedings of the National Academy of Sciences of the USA (PNAS).

In the carbon cycle, plants remove carbon dioxide (a greenhouse gas) from the atmosphere. Eventually, the carbon compounds that plants make are eaten by microbes and animals, which release carbon dioxide back into the atmosphere. The rapid cycling demonstrated by the new research is an important link in this process.

Professor Young said: Our research identifies microbes in roots that create a short cut in the carbon cycle. This is an important development given current interest in reducing outputs of carbon dioxide and the carbon trading that is intended to help this.

The researchers traced the path of the carbon by replacing the normal carbon dioxide in the air around the plants with a version made with C-13, a natural, non-radioactive form of carbon that is slightly heavier than the usual kind. Within hours, microbes in the roots were feeding on sugars laden with C-13 and using it to build their own cells.

The newly-made molecules of DNA and RNA produced by the microbes could be separated from pre-existing ones because the C13 made them heavier. DNA and RNA are large molecules that carry genetic information about the organisms that made them, so it was possible to identify the microbes that made those heavy molecules. These were the greedy ones that were consuming the largest share of the sugars provided by the plant.

Professor Young said: There are rich communities of microbes growing in or around the roots of all plants growing in normal soil. Most do no harm to the plant, and some are very beneficial to it. We looked at two sorts of microbe: bacteria and mycorrhizal fungi.

The researchers found a high diversity of both types of microbe inside the roots of grass or clover plants growing in a pasture, but the heavy label revealed that some of these were growing much more actively than others.

Professor Young added: It is these active organisms that are important because they are turning sugar back into carbon dioxide, which is released into the atmosphere. We were astonished at the wide variety of active bacteria that we discovered. Many of them had not been seen in plant roots before, and we have no idea how they may affect plant growth.

The role of mycorrhizal fungi is better known. They are particularly important in carbon cycling, because they pump the carbon compounds out of the root into a massive network of fine fungal filaments in the soil, where it becomes available to other microbes and also to larger soil organisms like worms, mites and insects. In return, the fungus gathers phosphorus from the soil and delivers it to the plant, helping the plant to grow better. The research confirmed that there were many different fungi in the roots of each plant, but revealed, for the first time, which of these fungi were most active.


'/>"/>

Contact: David Garner
dcg501@york.ac.uk
44-019-044-32153
University of York
Source:Eurekalert

Related biology news :

1. Understanding why C. difficile causes disease -- its hungry
2. How to lose weight and not go hungry: HU researcher develops drug that mimics feeling of fullness
3. W.M. Keck Foundation funds study of friendly microbes
4. Yellowstone microbes fueled by hydrogen, according to U. of Colorado study
5. Harnessing microbes, one by one, to build a better nanoworld
6. Leprosy microbes lead scientists to immune discovery
7. Could microbes solve Russias chemical weapons conundrum?
8. Proteomics brings researchers closer to understanding microbes that produce acid mine drainage
9. Researchers Discover That Microbes Can Produce Miniature Electrical Wires
10. Freeze-dried mats of microbes awaken in Antarctic streambed
11. Microbes under Greenland Ice may be preview of what scientists find under Mars surface
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... GOTHENBURG, Sweden , April 28, 2016 ... 1,491.2 M (139.9), up 966% compared with the first quarter of ... Operating profit totaled SEK 589.1 M (loss: 18.8) and the operating ... SEK 7.12 (loss: 0.32) Cash flow from operations was ... , The 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. ...
(Date:4/19/2016)... 2016 The new GEZE SecuLogic ... web-based "all-in-one" system solution for all door components. It ... the door interface with integration authorization management system, and ... The minimal dimensions of the access control and the ... installations offer considerable freedom of design with regard to ...
(Date:4/14/2016)... April 14, 2016 BioCatch ... Detection, today announced the appointment of Eyal Goldwerger ... role. Goldwerger,s leadership appointment comes at a ... of the deployment of its platform at several of ... technology, which discerns unique cognitive and physiological factors, is ...
Breaking Biology News(10 mins):
(Date:4/27/2016)... SPRING, Md. and RESEARCH TRIANGLE ... Therapeutics Corporation (NASDAQ: UTHR ) announced today ... Executive Officer, of United Therapeutics will provide an overview ... Bank 41 st Annual Health Care Conference. ... 5, 2016, at 10:00 a.m. Eastern Time, and can ...
(Date:4/27/2016)... ... 27, 2016 , ... PathSensors, Inc., a leading environmental testing ... will assist PathSensors in expanding the use of the company’s CANARY® technology in ... platform for the detection of harmful pathogens, including a number of bacteria, viruses, ...
(Date:4/27/2016)... ... ... Global Stem Cells Group and the University of Santiago Biotechnology Lab have ... for potential stem cell protocol management for 2016 – 2020. , In 2015, ... establish a working agenda and foster initiatives to promote stem cell research and development ...
(Date:4/26/2016)... ... April 27, 2016 , ... ... Roca Rothgerber Christie LLP as an associate in the firm’s Intellectual Property practice ... electrical, mechanical and electromechanical patent applications. He has an electrical engineering and computer ...
Breaking Biology Technology: