Navigation Links
'Humanized' mice developed at OHSU enable malaria research breakthrough at Seattle BioMed
Date:9/10/2012

PORTLAND, Ore. A novel human liver-chimeric mouse model developed at Oregon Health & Science University and Yecuris Corporation has made possible a research breakthrough at Seattle Biomedical Research Institute that will greatly accelerate studies of the most lethal forms of human malaria.

The study findings are published online in the Journal of Clinical Investigation. Study photos were selected to appear in "Scientific Show Stoppers" on the JCI blog.

Plasmodium falciparum, one of two human-specific malaria parasites, is a global health crisis, causing more than 216 million new infections annually and resulting in an estimated 655,000 deaths, according to the World Health Organization.

Sporozoites, the infectious form of the parasite, are spread to people through the bites of infected mosquitos and multiply in the human liver during the initial stages of infection. There, they undergo liver stage development, culminating in the formation and release of tens of thousands of merozoites, the parasitic phase of development that infects red blood cells.

Until now, there have been few data on human malaria liver stage biology due to the lack of a viable small animal model and because liver stage P. falciparum does not grow well in a dish. Consequently, most research and therapeutics to date have targeted the human blood stage of P. falciparum's development because it replicates well in culture.

The liver-to-blood stage of P. falciparum is the focus of this research because the parasite is virtually harmless, causing no disease symptoms, prior to its transition to the blood stage.

In this study, researchers at Seattle Biomedical Research Institute, Yecuris Corporation, Oregon Health & Science University and The Rockefeller University have demonstrated that a complete liver-to-blood stage infection of P. falciparum is possible using a unique immunocompromised mouse model engrafted with human liver-chimeric cells.

The mouse model, termed the FRGTM KO mouse, was developed by paper co-author and internationally accomplished stem cell researcher Markus Grompe, M.D., in the Pap Family Pediatric Research Institute, a research arm of Oregon Health & Science University Doernbecher Children's Hospital.

In 2007 the technology was licensed to Yecuris Corporation, a biotechnology company that now produces the model and human hepatocytes on a commercial scale. As a result of this work, the FRGTM KO mouse now will be used to study new drug interventions, parasite attenuation and innate immune responses to P. falciparum liver stage infection.

The scientists also report that through the infection of the FRGTM KO mouse model, they were able to observe a previously unknown expression of proteins in liver stage development in humans that may be exploited for intervention. Equally important, they say, the FRGTM KO mouse could well provide unique opportunities for the study of another severe form of human malaria, Plasmodium vivax.

"These breakthroughs are remarkable and highlight OHSU and Yecuris' contributions to local biotechnology and research breakthroughs globally. The next generation mouse model we're developing will have a human immune system that will allow us to test not just drugs, but vaccines, which has never been done for parasitic diseases," said Grompe, Ray Hickey Chair and Director of the Pap Family Pediatric Research Institute, OHSU Doernbecher Children's Hospital; and professor of pediatrics, and molecular and medical genetics, OHSU School of Medicine.

Grompe founded Yecuris Corporation in 2007 and is a shareholder. John Bial, who joined Yecuris in 2009, is president and chief executive officer.

"The extensive collaborative relationships and risk-taking involved in planning and executing this research is a testament to the tireless dedication of these teams to solving one of the globe's oldest killers. It also highlights how private and public funding can come together effectively to address critical challenges in global health," said Bial.

"This first demonstration of the newly developed dual humanized FRGTM KO system is a good introduction to the kinds of translational medicine benefits that we can expect to see from these technologies. We anticipate that the next frontier for these systems will be as platforms for human vaccine development and validation, which may very likely first be tested in the area of malaria," Bial explained.


'/>"/>

Contact: Tamara Hargens-Bradley
hargenst@ohsu.edu
503-494-8231
Oregon Health & Science University
Source:Eurekalert  

Related biology news :

1. Mini-CT scanner developed as a teaching tool
2. Blossom end rot plummets in Purdue-developed transgenic tomato
3. The first chemical circuit developed
4. Grassroots approach to conservation developed
5. Composite nanofibers developed by Penn scientists next chapter in orthopaedic biomaterials
6. Electronic nose prototype developed
7. New long-term antimicrobial catheter developed
8. Keck award enables Carnegie Mellon and Stanford to dramatically expand crowdsourced RNA design
9. New genomic sequencing method enables smarter anaysis of individual cells
10. The end of an era? Branding horses does not enable them to be identified
11. Notre Dame researchers using novel method to combat malaria drug resistance
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Humanized' mice developed at OHSU enable malaria research breakthrough at Seattle BioMed
(Date:2/28/2017)... , Feb. 28, 2017   Acuant , a ... globally, announces significant enhancements to new and core technologies ... New products include mobile and desktop Acuant FRM TM ... - a real time manual review of identity ... technology provides the fastest and most accurate capture software ...
(Date:2/24/2017)... -- EyeLock LLC, a leader of iris-based identity authentication ... solution on the latest Qualcomm® Snapdragon™ 835 mobile ... Congress 2017 (February 27 – March 2, ... Stand 3E10. The Snapdragon 835 ... combination of hardware, software and biometrics technologies ...
(Date:2/14/2017)... WINSTON-SALEM, N.C. , Feb. 14, 2017  Wake ... FRY-shlog), M.D., as its new chief executive officer (CEO). ... succeeds CEO John D. McConnell , M.D., who ... new position at the Medical Center, after leading it ... oversee the full scope of Wake Forest Baptist,s academic ...
Breaking Biology News(10 mins):
(Date:3/29/2017)... , March 29, 2017 /PRNewswire/ -  GeneNews Limited (TSX:GEN) ... BreastSentry™ , a new risk stratification test for breast cancer, ... Innovative Diagnostics Laboratory ("IDL"). BreastSentry incorporates a blood-based biomarker test ... lifetime risk for developing breast cancer.   ... BreastSentry measures the fasting ...
(Date:3/28/2017)... (PRWEB) , ... March 28, 2017 , ... Mass spectrometry ... The utilization of this technology is driven by its potential to perform challenging analyses ... are also some challenges that must be addressed for it to be routinely used ...
(Date:3/28/2017)... , March 28, 2017 Summary ... understand Enzo Biochem and its partnering interests and activities since ... report provides an in-depth insight into the partnering activity of ... On demand company reports are prepared upon purchase to ensure ... data. The report will be delivered in PDF ...
(Date:3/28/2017)... Dr. Chris Yu , Chief ... Anpac Bio-Medical Science Company , announced this week ... and reporting over 40,000 cases worldwide of the ... liquid biopsy tests. Described as "game ... Anpac Bio,s CDA medical devices and technology effectively ...
Breaking Biology Technology: