Navigation Links
Human embryonic stem cell -- derived bone tissue closes massive skull injury
Date:12/2/2007

There are mice in Baltimore whose skulls were made whole again by bone tissue grown from human embryonic stem cells (hESCs).

Healing critical-size defects (defects that would not otherwise heal on their own) in intramembraneous bone, the flat bone type that forms the skull, is a vivid demonstration of new techniques devised by researchers at John Hopkins University to use hESCs for tissue regeneration.

Using mesenchymal precursor cells isolated from hESCs, the Hopkins team steered them into bone regeneration by using scaffolds, tiny, three-dimensional platforms made from biomaterials.

Physical context, it turns out, is a powerful influence on cell fate. Nathaniel S. Hwang, Jennifer Elisseeff, and colleagues at Hopkins demonstrated that by changing the scaffold materials, they could shift mesenchymal precursor cells into either of the bodys osteogenic pathways: intramembraneous, which makes skull, jaw, and clavicle bone; or endochondral, which builds the long bones and involves initial formation of cartilage, which is then transformed into bone by mineralization.

Mesenchymal precursor cells grown on an all-polymer, biodegradable scaffold followed the endochondral lineage. Those grown on a composite scaffold made of biodegradable polymers and a hard, gritty mineral called hydroxyapatite went to the intramembraneous side.

Biomaterial scaffolds provide a three-dimensional framework on which cells can proliferate and differentiate, secrete extracellular matrix, and form functional tissues, says Hwang. In addition, their known composition allowed the researchers to characterize the extracellular microenvironmental cues that drive the lineage specification.

The promise of pluripotent embryonic stem cells for regenerative medicine hangs on the development of such control techniques. Left to themselves, hESCs in culture differentiate wildly, forming a highly mixed population of cell types, which is of little use for cell-based therapy or for studying particular lineages.

Conventional hESC differentiation protocols rely on growth factors, co-culture, or genetic manipulation, say the researchers. The scaffolds offer a much more efficient method.

As a proof of principle, Hwang and colleagues seeded hESC-derived mesenchymal cells onto hydroxyapatite-composite scaffolds and used the resulting intramembraneous bone cells to successfully heal large skull defects in mice. The Hopkins researchers believe that this is the first study to demonstrate a potential application of hESC-derived mesenchymal cells in a musculoskeletal tissue regeneration application.


'/>"/>

Contact: John Fleischman
jfleischman@ascb.org
513-929-4635
American Society for Cell Biology
Source:Eurekalert

Related biology news :

1. Gene regulation, not just genes, is what sets humans apart
2. Antioxidant overload may underlie a heritable human disease
3. Facial attraction -- choice of sexual partner shaped the human face
4. Humans fostering forest-destroying disease
5. SRMs track fire retardants in humans and environment
6. St. Jude influenza survey uncovers key differences between bird flu and human flu
7. Human derived stem cells can repair rat hearts damaged by heart attack
8. Influence of sex and handedness on brain is similar in capuchin monkeys and humans
9. Gene regulation in humans is closer than expected to simple organisms
10. Pittsburgh scientists identify human source of stem cells with potential to repair muscle
11. Researchers developing device to predict proper light exposure for human health
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... April 20, 2016 The new ... a compact web-based "all-in-one" system solution for all door ... reader or the door interface with integration authorization management ... control systems. The minimal dimensions of the access control ... the building installations offer considerable freedom of design with ...
(Date:3/31/2016)... Florida , March 31, 2016 ... ) ("LegacyXChange" or the "Company") LegacyXChange ... potential users of its soon to be launched online ... ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also provide potential ... use of DNA technology to an industry that is ...
(Date:3/22/2016)... and SANDY, Utah , ... which operates the highest sample volume laboratory in ... Genomics and UNIConnect, leaders in clinical sequencing informatics and ... launch of a project to establish the informatics infrastructure ... NSO has been contracted by the Ontario ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... April 29, 2016 , ... ... fundamentals to transform technology into a viable company, CereScan’s CEO, John Kelley, joined ... Kelley, a recognized leader and mentor in the Denver area business community, shared ...
(Date:4/29/2016)... Italy , April 29, 2016 ... 5.11, the latest update to its industry-leading treatment planning ... shown that Monaco version 5.11 ... can now attain calculation speeds up to four times ... . With the industry,s gold standard ...
(Date:4/28/2016)... ... 28, 2016 , ... Connecticut Innovations (CI), the ... announced the launch of VentureClash , a $5 million global investment challenge ... looks to attract the best early-stage companies here in Connecticut, around the country ...
(Date:4/28/2016)... , ... April 28, 2016 , ... ... will hold an open house for regional manufacturers at its Maple Grove, Minnesota ... Tsugami, Okuma, Hardinge Group, Chiron and Trumpf. Almost 20 leading suppliers of ...
Breaking Biology Technology: