Navigation Links
Human embryonic stem cell -- derived bone tissue closes massive skull injury

There are mice in Baltimore whose skulls were made whole again by bone tissue grown from human embryonic stem cells (hESCs).

Healing critical-size defects (defects that would not otherwise heal on their own) in intramembraneous bone, the flat bone type that forms the skull, is a vivid demonstration of new techniques devised by researchers at John Hopkins University to use hESCs for tissue regeneration.

Using mesenchymal precursor cells isolated from hESCs, the Hopkins team steered them into bone regeneration by using scaffolds, tiny, three-dimensional platforms made from biomaterials.

Physical context, it turns out, is a powerful influence on cell fate. Nathaniel S. Hwang, Jennifer Elisseeff, and colleagues at Hopkins demonstrated that by changing the scaffold materials, they could shift mesenchymal precursor cells into either of the bodys osteogenic pathways: intramembraneous, which makes skull, jaw, and clavicle bone; or endochondral, which builds the long bones and involves initial formation of cartilage, which is then transformed into bone by mineralization.

Mesenchymal precursor cells grown on an all-polymer, biodegradable scaffold followed the endochondral lineage. Those grown on a composite scaffold made of biodegradable polymers and a hard, gritty mineral called hydroxyapatite went to the intramembraneous side.

Biomaterial scaffolds provide a three-dimensional framework on which cells can proliferate and differentiate, secrete extracellular matrix, and form functional tissues, says Hwang. In addition, their known composition allowed the researchers to characterize the extracellular microenvironmental cues that drive the lineage specification.

The promise of pluripotent embryonic stem cells for regenerative medicine hangs on the development of such control techniques. Left to themselves, hESCs in culture differentiate wildly, forming a highly mixed population of cell types, which is of little use for cell-based therapy or for studying particular lineages.

Conventional hESC differentiation protocols rely on growth factors, co-culture, or genetic manipulation, say the researchers. The scaffolds offer a much more efficient method.

As a proof of principle, Hwang and colleagues seeded hESC-derived mesenchymal cells onto hydroxyapatite-composite scaffolds and used the resulting intramembraneous bone cells to successfully heal large skull defects in mice. The Hopkins researchers believe that this is the first study to demonstrate a potential application of hESC-derived mesenchymal cells in a musculoskeletal tissue regeneration application.


Contact: John Fleischman
American Society for Cell Biology

Related biology news :

1. Gene regulation, not just genes, is what sets humans apart
2. Antioxidant overload may underlie a heritable human disease
3. Facial attraction -- choice of sexual partner shaped the human face
4. Humans fostering forest-destroying disease
5. SRMs track fire retardants in humans and environment
6. St. Jude influenza survey uncovers key differences between bird flu and human flu
7. Human derived stem cells can repair rat hearts damaged by heart attack
8. Influence of sex and handedness on brain is similar in capuchin monkeys and humans
9. Gene regulation in humans is closer than expected to simple organisms
10. Pittsburgh scientists identify human source of stem cells with potential to repair muscle
11. Researchers developing device to predict proper light exposure for human health
Post Your Comments:
(Date:11/17/2015)... November 17, 2015 Paris ... 2015.  --> Paris , qui ... DERMALOG, le leader de l,innovation biométrique, a inventé ... passeports et empreintes sur la même surface de balayage. ... et l,autre pour les empreintes digitales. Désormais, un seul ...
(Date:11/17/2015)... 17, 2015 Pressure BioSciences, Inc. (OTCQB: PBIO) ... and sale of broadly enabling, pressure cycling technology ("PCT")-based ... today announced it has received gross proceeds of $745,000 ... Placement (the "Offering"), increasing the total amount raised to ... additional closings are expected in the near future. ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... , Nov. 30, 2015  HUYA Bioscience International, ... China,s pharmaceutical innovations, today announced it has ... Development Fund (KDDF) to foster collaboration between KDDF and ... and commercialization of healthcare products for the global market. ... an important source of new innovative preclinical and clinical ...
(Date:11/30/2015)... Md. , Nov. 30, 2015  Northwest Biotherapeutics ... company developing DCVax® personalized immune therapies for solid tumor ... adding an additional independent director, and the Company welcomes ... of allegations in a recent anonymous internet report on ... both initiatives. Linda Powers stated, "We ...
(Date:11/27/2015)... Kingdom , Nov. 27, 2015 /PRNewswire/--  Mallinckrodt plc ... company, announced today that it has closed the sale ... business to Guerbet (GBT- NYSE Euronext) in a transaction ... encompassed four manufacturing facilities and a total of approximately ... in the St. Louis area. ...
(Date:11/26/2015)... England , November 26, 2015 ... an innovative medical device company specializing in imaging technologies, announced ... the European Commission as part of the Horizon 2020 European ... to carry out a large-scale clinical trial in breast cancer. ...      (Logo: , --> ...
Breaking Biology Technology: