Navigation Links
Human beta cells can be easily induced to replicate, according to study in Diabetes
Date:1/13/2009

PITTSBURGH, Jan 13 Researchers at the University of Pittsburgh School of Medicine have successfully induced human insulin-producing cells, known as beta cells, to replicate robustly in a living animal, as well as in the lab. The discovery not only could improve models and methods for studying diabetes, but also opens up new possibilities for treating the condition.

"Most scientists thought that these important pancreatic cells could not be induced to regenerate, or could only replicate very slowly," explained senior author Andrew F. Stewart, M.D., professor of medicine and chief of the Division of Endocrinology and Metabolism at the University of Pittsburgh School of Medicine. "This work provides proof-of-principle that the production of human beta cells can be stimulated, and that the newly generated cells function effectively both in the lab and in a living animal."

The findings are in the early online version of Diabetes, one of the journals of the American Diabetes Association.

Lead authors Nathalie Fiaschi-Taesch, Ph.D., assistant professor in Pitt's endocrinology division, and Todd A. Bigatel, M.D., a graduate of the postdoctoral fellowship program, identified molecules that play key roles in human beta, or islet, cell replication, building on previous work conducted by co-author Irene Cozar-Castellano, Ph.D., also an instructor of endocrinology, who performed similar studies using mouse cells.

They found that, unlike rodents, human beta cells contain a significant amount of a protein called cdk-6. When cdk-6 production was increased using a viral vector carrying the cdk-6 gene, the cells replicated. Stimulation was further enhanced by increasing production of another cell cycle molecule called cyclin D1. Untreated human islets did not replicate.

"After we transplanted some of these engineered human beta cells under the outer layer of a kidney in a diabetic mouse, we saw that replication continued and blood sugar levels normalized," explained Dr. Fiaschi-Taesch. "When we took out the kidney that contained the insulin-producing cells, the mouse immediately developed diabetes again."

The prospect of being able to study human beta cells and their replication in vivo, meaning in a living animal, could greatly improve diabetes study models, and could lead to techniques to generate new beta cells in patients with diabetes. In the future, it also could allow more effective therapeutic transplants of insulin-producing cells either by expanding the numbers of cells available from a single cadaveric donor or from a gene-enhanced version of the patient's own cells, or by establishing permanent cell lines from existing beta cells or stem cells, Dr. Stewart pointed out.

He added that cell cycle replication molecules might also be targets for drugs that could transiently turn on beta cell replication to increase insulin production.


'/>"/>

Contact: Anita Srikameswaran
SrikamAV@upmc.edu
412-647-3555
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. As super-predators, humans reshape their prey at super-natural speeds
2. Primate culture is just a stones throw away from human evolution, study finds
3. Human genomics in China
4. Understanding extinct microbes may influence the state of modern human health
5. New use for human hair
6. Neural mechanisms of value bias in the human visual cortex
7. Biomedical researchers create artificial human bone marrow in a test tube
8. African thicket rat malaria linked to virulent human form
9. Snails and humans use same genes to tell right from left
10. VistaGen, WARF sign license agreement for human embryonic stem cell technology
11. Scientists study how asbestos fibers trigger cancer in human cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/1/2017)... BOSTON, Massachusetts , February 1, 2017 ... and events on emerging technology, announces the availability of a new ... Continue Reading ... ... systems in industrial and collaborative robots. Source: IDTechEx Report "Sensors for ...
(Date:1/25/2017)... NEW YORK , Jan. 25, 2017 /PRNewswire/ ... and Access Management (IAM) lifecycle is comprised of ... infrastructure for the purpose of maintaining digital identities ... enterprise resources and applications. There are significant number ... compliance from time to time by optimizing processes ...
(Date:1/19/2017)... PUNE, India , January 19, 2017 According to ... Market, Opportunities and Forecast, 2014 - 2022," the global biometric sensor market is ... from 2016 to 2022. In 2015, Asia-Pacific dominated the ... public and private sectors. Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:2/21/2017)... ... 21, 2017 , ... The medical potential of stem cells is both extensive ... medicine, due to their differentiating characteristics. Stem cells are unique as the have the ... induced to become tissue or organic-specific cells with special functions. , Stem cell ...
(Date:2/21/2017)... ... February 21, 2017 , ... Creation Technologies, a private ... original equipment manufacturers (OEMs) , today announced it has received the ‘Highest Overall ... winning in its category of electronics manufacturing services (EMS) providers with annual revenues ...
(Date:2/21/2017)... YORK , Feb. 21, 2017   Logicalis ... an international IT solutions and managed services provider ( ... – Service Desk for Epic. The new service will ... internal Epic resources by giving physicians, nurses and other ... specialists for tier-one support. This will allow hospital IT ...
(Date:2/21/2017)... 21, 2017 Research and Markets has announced ... & Trends - Industry Forecast to 2025" report to their ... The ... CAGR of around 12.8% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
Breaking Biology Technology: