Navigation Links
Human beta cells can be easily induced to replicate, according to study in Diabetes
Date:1/13/2009

PITTSBURGH, Jan 13 Researchers at the University of Pittsburgh School of Medicine have successfully induced human insulin-producing cells, known as beta cells, to replicate robustly in a living animal, as well as in the lab. The discovery not only could improve models and methods for studying diabetes, but also opens up new possibilities for treating the condition.

"Most scientists thought that these important pancreatic cells could not be induced to regenerate, or could only replicate very slowly," explained senior author Andrew F. Stewart, M.D., professor of medicine and chief of the Division of Endocrinology and Metabolism at the University of Pittsburgh School of Medicine. "This work provides proof-of-principle that the production of human beta cells can be stimulated, and that the newly generated cells function effectively both in the lab and in a living animal."

The findings are in the early online version of Diabetes, one of the journals of the American Diabetes Association.

Lead authors Nathalie Fiaschi-Taesch, Ph.D., assistant professor in Pitt's endocrinology division, and Todd A. Bigatel, M.D., a graduate of the postdoctoral fellowship program, identified molecules that play key roles in human beta, or islet, cell replication, building on previous work conducted by co-author Irene Cozar-Castellano, Ph.D., also an instructor of endocrinology, who performed similar studies using mouse cells.

They found that, unlike rodents, human beta cells contain a significant amount of a protein called cdk-6. When cdk-6 production was increased using a viral vector carrying the cdk-6 gene, the cells replicated. Stimulation was further enhanced by increasing production of another cell cycle molecule called cyclin D1. Untreated human islets did not replicate.

"After we transplanted some of these engineered human beta cells under the outer layer of a kidney in a diabetic mouse, we saw that replication continued and blood sugar levels normalized," explained Dr. Fiaschi-Taesch. "When we took out the kidney that contained the insulin-producing cells, the mouse immediately developed diabetes again."

The prospect of being able to study human beta cells and their replication in vivo, meaning in a living animal, could greatly improve diabetes study models, and could lead to techniques to generate new beta cells in patients with diabetes. In the future, it also could allow more effective therapeutic transplants of insulin-producing cells either by expanding the numbers of cells available from a single cadaveric donor or from a gene-enhanced version of the patient's own cells, or by establishing permanent cell lines from existing beta cells or stem cells, Dr. Stewart pointed out.

He added that cell cycle replication molecules might also be targets for drugs that could transiently turn on beta cell replication to increase insulin production.


'/>"/>

Contact: Anita Srikameswaran
SrikamAV@upmc.edu
412-647-3555
University of Pittsburgh Schools of the Health Sciences
Source:Eurekalert

Related biology news :

1. As super-predators, humans reshape their prey at super-natural speeds
2. Primate culture is just a stones throw away from human evolution, study finds
3. Human genomics in China
4. Understanding extinct microbes may influence the state of modern human health
5. New use for human hair
6. Neural mechanisms of value bias in the human visual cortex
7. Biomedical researchers create artificial human bone marrow in a test tube
8. African thicket rat malaria linked to virulent human form
9. Snails and humans use same genes to tell right from left
10. VistaGen, WARF sign license agreement for human embryonic stem cell technology
11. Scientists study how asbestos fibers trigger cancer in human cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... 22, 2016  The American College of Medical Genetics and ... Magazine as one of the fastest-growing trade shows during ... the Bellagio in Las Vegas . ... of growth in each of the following categories: net square ... number of attendees. The 2015 ACMG Annual Meeting was ranked ...
(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
(Date:6/9/2016)... June 9, 2016 Paris ... Teleste,s video security solution to ensure the safety of people ... during the major tournament Teleste, an international ... and services, announced today that its video security solution will ... to back up public safety across the country. The system ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... N.C. (PRWEB) , ... June 27, 2016 , ... ... commercial operations for Amgen, will join the faculty of the University of ... as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus ...
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/24/2016)... June 24, 2016 Epic Sciences unveiled ... cancers susceptible to PARP inhibitors by targeting homologous ... (CTCs). The new test has already been incorporated ... multiple cancer types. Over 230 clinical ... response pathways, including PARP, ATM, ATR, DNA-PK and ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in ... peritoneal or pleural mesothelioma. Their findings are the subject of a new article on ... biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma patients that ...
Breaking Biology Technology: