Navigation Links
Human DNA repair process recorded in action
Date:1/29/2009

A key phase in the repair process of damaged human DNA has been observed and visually recorded by a team of researchers at the University of California, Davis. The recordings provide new information about the role played by a protein known as Rad51, which is linked to breast cancer, in this complex and critical process.

The breakthrough comes a decade after Stephen Kowalczykowski, a distinguished professor of microbiology and the study's principal investigator, and Ron Baskin, professor emeritus of molecular and cellular biology, first began developing methods of labeling molecules with fluorescent markers and observing them at work using optical trapping of individual DNA molecules and advanced microscopy techniques. In 2006, the researchers recorded a portion of the bacterial DNA repair process, a system considerably less complex than its human counterpart. The new study was published in the Proceedings of the National Academy of Sciences on Jan. 13.

Human DNA is under constant assault from harmful agents such as ultraviolet sunlight, tobacco smoke and a myriad of chemicals, both natural and man-made. Because damage can lead to cancer, cell death and mutations, an army of proteins and enzymes are mobilized into action whenever it occurs.

Rad51 takes a leading role in the action. Always on call in the cell, molecules of the protein assemble into a long filament along a damaged or broken segment of DNA, where they help stretch out the coiled strands and align them with corresponding segments on the cell's second copy of the chromosome, which serves as a template for reconstruction. Because this protein is regulated by a gene linked to increased risk of breast cancer, BRCA2, it is also thought to play a role in suppression of that disease.

With the ability to watch the assembly of individual filaments of Rad51 in real time, Kowalczykowski's team made a number of discoveries. Among those are that, in contrast to their bacterial counterparts, Rad51 filaments don't grow indefinitely. This indicates that there is an as-yet undiscovered mechanism that regulates the protein's growth, Kowalczykowski said.

Another surprising difference between the human and bacterial processes, Kowalczykowski said, is that Rad51 doesn't fall away from the DNA when repair is complete. Instead, proteins that motor along DNA are required to dislodge it.

"From a practical point of view, being able to record these single molecules gives us insightful information regarding the assembly process," the researcher said. "Now we're able to measure this in a quantifiably meaningful way."

g of individual DNA molecules and advanced microscopy techniques. In 2006, the researchers recorded a portion of the bacterial DNA repair process, a system considerably less complex than its human counterpart. The new study was published in the Proceedings of the National Academy of Sciences on Jan. 13.

Human DNA is under constant assault from harmful agents such as ultraviolet sunlight, tobacco smoke and a myriad of chemicals, both natural and man-made. Because damage can lead to cancer, cell death and mutations, an army of proteins and enzymes are mobilized into action whenever it occurs.

Rad51 takes a leading role in the action. Always on call in the cell, molecules of the protein assemble into a long filament along a damaged or broken segment of DNA, where they help stretch out the coiled strands and align them with corresponding segments on the cell's second copy of the chromosome, which serves as a template for reconstruction. Because this protein is regulated by a gene linked to increased risk of breast cancer, BRCA2, it is also thought to play a role in suppression of that disease.

With the ability to watch the assembly of individual filaments of Rad51 in real time, Kowalczykowski's team made a number of discoveries. Among those are that, in contrast to their bacterial counterparts, Rad51 filaments don't grow indefinitely. This indicates that there is an as-yet undiscovered mechanism that regulates the protein's growth, Kowalczykowski said.

Another surprising difference between the human and bacterial processes, Kowalczykowski said, is that Rad51 doesn't fall away from the DNA when repair is complete. Instead, proteins that motor along DNA are required to dislodge it.

"From a practical point of view, being able to record these single molecules gives us insightful information regarding the assembly process," the researcher said. "Now we're able to measure this in a quantifiably meaningful way."


'/>"/>

Contact: Liese Greensfelder
lgreensfelder@ucdavis.edu
530-752-6101
University of California - Davis
Source:Eurekalert  

Related biology news :

1. Stress disrupts human thinking, but the brain can bounce back
2. New insights into a leading poultry disease and its risks to human health
3. The Evolution of Human Aggression: Feb. 25-27 conference
4. Director of Berman Institute comments on FDA Approval of first human embryonic stem cell trial
5. Researchers genetically link Lou Gehrigs disease in humans to dog disease
6. Researchers examine developing hearts in chickens to find solutions for human heart abnormalities
7. Robo-surgery: As safe and capable as a human assistant in key-hole gallbladder removal
8. Microbot motors fit to swim human arteries
9. Gene switch sites found mainly on shores, not just islands of the human genome
10. JDRF-funded researchers discover proteins regulating human beta cell replication
11. Human beta cells can be easily induced to replicate, according to study in Diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Human DNA repair process recorded in action
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
(Date:5/24/2016)... 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology to ... display is the latest premium product recently added to the range of products distributed ... ... ... Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , ... June 27, 2016 , ... Parallel 6 ... trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT module which ... with the physician and clinical trial team. , Using the CONSULT module, patients and ...
(Date:6/27/2016)... --  Ginkgo Bioworks , a leading organism design ... awarded as one of the World Economic Forum,s ... innovative companies. Ginkgo Bioworks is engineering biology to ... in the nutrition, health and consumer goods sectors. ... including Fortune 500 companies to design microbes for ...
(Date:6/24/2016)... NC (PRWEB) , ... June 24, 2016 , ... Researchers ... the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are ... to read it now. , Diagnostic biomarkers are signposts in the blood, lung ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
Breaking Biology Technology: