Navigation Links
How yeast chromosomes avoid the bad breaks
Date:8/7/2011

CAMBRIDGE, Mass. (August 7, 2011) The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence. During meiosisthe cell division that produces sperm and eggsrepetitive elements place the genome at risk for dangerous rearrangements from genome reshuffling. This recombination typically does not occur in repetitive DNA, in part because much of it is assembled into specialized heterochromatin. Other mechanisms that restrain recombination in repetitive DNA have remained elusive, until now.

In a paper published online today in the journal Nature, researchers in the lab of Whitehead Institute Fellow Andreas Hochwagen describe a defense mechanism in yeast that shields repetitive DNA from meiotic DNA recombination. According to the work of Hochwagen and his colleagues, the protective repeat-associated heterochromatin makes the DNA segments near the boundary of the heterochromatin particularly vulnerable to inappropriate meiotic recombination. DNA elements surrounding these at-risk border regions are protected from meiotic recombination by a novel system involving the concerted action of two proteins, pachytene checkpoint protein 2 (Pch2) and origin recognition complex subunit 1 (Orc1), which are present in organisms ranging from yeast to humans.

During meiosis an organism's chromosomes pair up, with every pair containing a copy inherited from each of the organism's parents. To match up the chromosomes, the cell breaks both strands of the chromosomes' DNA in multiple locations, and the chromosomes swap DNA sections that have the same sequence. Later, when the paired chromosomes are pulled apart, each resulting chromosome is a patchwork of maternal and paternal genes. The creation of reshuffled chromosomes assists chromosome assortment into spore, sperm, and egg cells, but it also has a profound effect on evolution, because it produces new genetic variants.

"To me it's always been very confusing why you would break your genome. It's your blueprint," says Hochwagen. "Obviously, it helps you make new variations and combinations of genes, but it's incredibly dangerous and you really need to make sure that it happens the right way."

In repetitive DNA, this system of breaking and swapping is particularly hazardous, as there are many options that a section of repeat DNA could be swapped with. If the wrong repeat is chosen, a chromosome can gain or lose a large chunk of DNA. In humans, such mistakes have been linked to genetic neurological and developmental disorders, including autism spectrum disorders and schizophrenia.

By studying the highly repetitive DNA that makes up yeast's ribosomal DNA (rDNA), Gerben Vader and Hannah Blitzblau, first authors of the Nature paper and postdoctoral researchers in Hochwagen's lab, have determined that yeast's rDNA is protected from inappropriate recombination by two mechanisms. It was previously shown that heterochromatin prevents chromosome breakage in repetitive DNA. But in their paper, Vader and Blitzblau demonstrate that, ironically, the protective heterochromatin renders the transition zone between the repetitive and non-repetitive DNA particularly fragile. The yeast cell buttresses these borders with Pch2 and Orc1, which prevent chromosome breakage across the entire transition zone. In their absence, rDNA frequently gains or loses repeats.

"We had previously seen very little chromosome breakage in large regions close to repetitive DNA," says Blitzblau. "The finding that the borders of heterochromatin are particularly fragile helps us to understand why the cell invests in specifically protecting these regions."

Although the modes of heterochromatin formation vary between organisms, similar strategies may be at work in higher organisms, too.

"In mice and flies repetitive DNA is also packaged into heterochromatin, and there is evidence that very few breaks happen in these regions during meiosis," says Vader. "So it is possible that this type of protection is a general phenomenon."


'/>"/>

Contact: Nicole Giese
giese@wi.mit.edu
617-258-6851
Whitehead Institute for Biomedical Research
Source:Eurekalert

Related biology news :

1. Researchers tap yeasts as source of green surfactants
2. Novel gene increases yeasts appetite for plant sugars
3. Cellular stress can induce yeast to promote prion formation
4. Shuttle Atlantis to launch with yeast
5. Dietary yeast extracts tested as alternative to antibiotics in poultry
6. Maquipucuna cloud forest in Ecuador yields new species of yeast
7. Heat shock protein drives yeast evolution
8. Green genes in yeast may boost biofuel production by increasing stress tolerance
9. Tracking down pathogenic yeasts
10. Flower-dwelling yeast licensed for use against scab disease
11. Guardian of the genome: Protein helps prevent damaged DNA in yeast
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/31/2016)...   LegacyXChange, Inc. ... LegacyXChange is excited to release its first ... be launched online site for trading 100% guaranteed authentic ... also provide potential shareholders a sense of the value ... industry that is notorious for fraud. The video is ...
(Date:3/29/2016)... Florida , March 29, 2016 ... the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased ... in ink used in a variety of writing instruments, ... Buyers of originally created collectibles from athletes on LegacyXChange ... forensic analysis of the DNA. Bill ...
(Date:3/22/2016)... India , March 22, 2016 /PRNewswire/ ... market research report "Electronic Sensors Market for Consumer ... Proximity, & Others), Application (Communication & IT, ... Geography - Global Forecast to 2022", published ... industry is expected to reach USD 26.76 ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample ... the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity ...
(Date:6/23/2016)... 2016  Blueprint Bio, a company dedicated to identifying, ... community, has closed its Series A funding round, according ... "We have received a commitment from Forentis Fund ... to meet our current goals," stated Matthew Nunez ... to complete validation on the current projects in our ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
(Date:6/23/2016)... -- Amgen (NASDAQ: AMGN ) today announced a ... sciences incubator to accelerate the development of new therapies ... QB3@953 was created to help high-potential life science and ... stage organizations - access to laboratory infrastructure. ... "Amgen Golden Ticket" awards, providing each winner with one ...
Breaking Biology Technology: