Navigation Links
How to build a plant
Date:6/25/2008

Walking through a tropical or temperate forest immediately impresses us with the myriad forms and soaring structures of the plant world, but our knowledge of how plants are actually built, cell by cell, is still incomplete. Now, with data emerging from many genome sequencing projects, scientists have begun to unravel the details of plant architecture at the molecular level. This knowledge has implications for crop yield improvement, biofuel production, and materials science.

Dr. Sarah Hake and her colleagues, George Chuck, Hector Candela-Anton, Nathalie Bolduc, Jihyun Moon, Devin O'Connor, China Lunde, and Beth Thompson, have taken advantage of the information from sequenced grass genomes to study how the reproductive structures of maize are formed. Dr. Hake, of the Plant Gene Expression Center, USDA-ARS, who is the 2007 recipient of the Stephen Hales Prize, will be presenting this work at the opening Awards Symposium of the annual meeting of the American Society of Plant Biologists in Mrida, Mexico (June 27, 3:10 PM).

Maize was first domesticated in the highlands of Mexico over 6,000 years ago and is now one of the most important crop plants in the world. It is a member of the grass family, which also hosts the world's other major crops including rice, wheat, barley, sorghum, and sugar cane. Maize has a rich genetic history, which has resulted in thousands of varieties or landraces. Scientists at CIMMYT, Centro Internacional de Mejoramiento de Maz y Trigo, the International Maize and Wheat Improvement Center, work to preserve the ancient varieties that represent adaptations to different environmental conditions such as different soils, temperature, altitude, and drought. These traits are expressions of different genes and groups of genes that scientists hope to utilize to keep up with changing climatic conditions and global food supply.

Dr. Hake and her colleagues have utilized this rich genetic history of maize to characterize how maize plant architecture is initiated and regulated. They have focused on plant stem cells, the groups of self-renewing cells, called meristems, which are located at the tips of plant shoots and roots. In particular, these scientists have studied the plant's flower structures, which become the corn grain or cob. They have used the numerous mutants generated in the complex maize genome to specify the gene networks and biochemical pathways that determine how the maize inflorescence is built. They have also made use of the genetic information from the already sequenced rice and Arabidopsis genomes as well as that emerging from the maize genome sequencing project. Up until recently, the thale cress, Arabidopsis, has been the most widely used model organism in plant biology because of its small size and fast generation time. However, says Dr. Hake, "Plant biology has benefited tremendously from Arabidopsis, but when we start to think about morphology, additional model organisms will be useful. Maize is a good model for the grasses because of the ease of genetics in maize, the recently sequenced genome, and the diversity between inbreds."

Meristems are classified as determinate or indeterminate. Indeterminate meristems are groups of cells that are self-renewing and continue to produce structures like stems, branches, leaves, and flowers throughout the life of the plant. Determinate meristems are groups of cells that are gradually consumed after producing a certain number of structures and organs. The maize inflorescence is a good model for studying plant development because it contains both kinds of meristems. Maize is also a good model system because its genetic complexity makes it highly amenable to mutation and it is transformable, allowing the generation of many different mutant lines and genetic backgrounds.

Hake and her co-workers have used maize mutants to dissect flower, grain, and leaf development in this and other grasses. For example, they cloned and characterized the barren inflorescence2 (bif2) and ramosa2 (ra2) mutants and determined their functions in the formation of axillary meristems, those that produce branches and flowers. Phylogenetic analyses showed that both bif2 and ra2 are highly conserved among different grass species.

Maize has two separate inflorescencesthe male tassel or pollen-producing flowers, and the female flowers that produce the kernel-bearing ears. Both sets of flowers begin as bisexual but with development, the female structures in the tassel and the male structures in the ear are arrested. By analyzing the mutant tasselseed4 (t4), Hake and her colleagues found that the t4 microRNA is important in determining the sex and cell fate of the groups of cells forming tassels and ears. Analyses of the mutant Corngrass1 (Cg1) demonstrated that this gene functions in production of mature leaves, while the mutant exhibits the architecture and structures of the juvenile plant.

Through their work with maize mutants, Hake and her colleagues have begun to assemble a representation of the networks of genes and the developmental and metabolic pathways that determine how plants are constructed. Through comparative phylogenetic analyses, they have shown the evolutionary conservation of these traits in other cereals crops, thus laying the groundwork for crop and yield improvement in other food plants as well.


'/>"/>

Contact: Sarah Hake
maizesh@nature.berkeley.edu
510-559-5907
American Society of Plant Biologists
Source:Eurekalert

Related biology news :

1. Manchester clears first hurdle in €170 million biobank building boom
2. Building on pyramids of trash
3. UCI awarded $27.2 million for new stem cell building
4. Scientists make chemical cousin of DNA for use as new nanotechnology building block
5. In Todays Economy, You Can Strengthen Your Company by Building Your Brand
6. FISH-BOL: NOAA researchers help build a global reference library of DNA barcodes
7. Can micro-scaffolding help stem cells rebuild the brain after stroke?
8. Scientists ask whether microscaffolding can help stem cells rebuild brain after stroke damage
9. International workshop to address capacity building for rainforest leaders
10. Scientists rebuild ancient proteins to reveal primordial Earths temperature
11. Building the future -- 21st century nano tools to repair the nervous system
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
(Date:4/19/2016)... -- The new GEZE SecuLogic access control ... system solution for all door components. It can be ... interface with integration authorization management system, and thus fulfills ... dimensions of the access control and the optimum integration ... considerable freedom of design with regard to the doors. ...
(Date:4/15/2016)... -- Research and Markets has announced the ...  report to their offering.  ,      ... gait biometrics market is expected to grow at ... Gait analysis generates multiple variables such ... compute factors that are not or cannot be ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
(Date:6/23/2016)... , June, 23, 2016  The Biodesign Challenge (BDC), ... new ways to harness living systems and biotechnology, announced ... (MoMA) in New York City . ... participating students, showcased projects at MoMA,s Celeste Bartos Theater ... Antonelli , MoMA,s senior curator of architecture and design, ...
(Date:6/23/2016)... June 23, 2016 Apellis Pharmaceuticals, Inc. ... clinical trials of its complement C3 inhibitor, APL-2. ... multiple ascending dose studies designed to assess the ... subcutaneous injection in healthy adult volunteers. ... as a single dose (ranging from 45 to ...
(Date:6/23/2016)... Prairie, WI (PRWEB) , ... June 23, 2016 ... ... consultancy focused on quality, regulatory and technical consulting, provides a free webinar ... is presented on July 13, 2016 at 12pm CT at no charge. , ...
Breaking Biology Technology: