Navigation Links
How tiny organisms make a big impact on clean water

Nearly every body of water, from a puddle or a pond to a vast ocean, contains microscopic organisms that live attached to rocks, plants, and animals. These so-called sessile suspension feeders are critical to aquatic ecosystems and play an important role in cleaning up environmental contaminants by consuming bacteria. A study published by Cell Press on October 15 in the Biophysical Journal reveals that by actively changing the angle of their bodies relative to the surfaces, these feeders overcome the physical constraints presented by underwater surfaces, maximize their access to fresh, nutrient-rich water, and filter the surrounding water.

"Our findings will allow scientists to make better estimates about how much water each of these tiny organisms can filter and clean, which can help us to make better estimates about how quickly bodies of water can recover after contamination caused by oil spills and sewage leaks," says lead study author Rachel Pepper of the University of California, Berkeley.

Microscopic sessile suspension feeders, which are made up of only one or a few cells, use hair-like or whip-like appendages to draw nutrient-rich fluid toward their bodies, filtering up to 25% of the seawater in coastal areas each day. Because they live attached to surfaces, they potentially face several challenges while they feed. For example, currents encounter resistance and slow down when they flow across these surfaces, interfering with the ability of suspension feeders to efficiently extract nutrients. The way that currents interact with surfaces may also cause water to recirculate around suspension feeders after the nutrients have been consumed.

To examine how the tiny organisms overcome these challenges, Pepper and her team used a combination of experiments and calculations. They observed that a protozoan called Vorticella convallaria actively changes its body orientation relative to the surface to which it is attached, in contrast to previous models, which assumed that sessile suspension feeders always feed at a perpendicular angle. The new model revealed that feeding at a parallel or other non-perpendicular angle substantially increases the amount of nutrients the organisms can extract from their surroundings by reducing both fluid resistance and the recirculation of nutrient-depleted water.

"We know very little about the processes microbes use to remove and recycle contaminants," Pepper says. "Our study shows that fluid flows at the scale of individual small organisms, when aggregated, can be important contributors to maintaining the quality of natural waters."


Contact: Mary Beth O'Leary
Cell Press

Related biology news :

1. University of Toronto biologists predict extinction for organisms with poor quality genes
2. Genetically modified corn affects its symbiotic relationship with non-target soil organisms
3. Progress of arachidonic acid biosynthesis in microorganisms
4. Why do organisms build tissues they seemingly never use?
5. New research suggests bacteria are social microorganisms
6. Unusual symbiosis discovered in marine microorganisms
7. Small organisms could dramatically impact worlds climate
8. Small marine organisms big changes could affect world climate
9. Plants recognise pathogenic and beneficial microorganisms
10. Strange diet for methane consuming microorganisms
11. Hearty organisms discovered in bitter-cold Antarctic brine
Post Your Comments:
(Date:11/16/2015)... , Nov 16, 2015  Synaptics Inc. (NASDAQ: ... interface solutions, today announced expansion of its TDDI ... touch controller and display driver integration (TDDI) ... smartphones. These new TDDI products add to the ... resolution), TD4302 (WQHD resolution), and TD4322 (FHD resolution) ...
(Date:11/12/2015)... Mass. , Nov. 12, 2015  Arxspan ... Institute of MIT and Harvard for use of ... discovery information management tools. The partnership will support ... both biological and chemical research information internally and ... will be used for managing the Institute,s electronic ...
(Date:11/11/2015)... 2015   MedNet Solutions , an innovative SaaS-based eClinical ... is pleased to announce that it will be a Sponsor ... event, to be held November 17-19 in Hamburg ... demonstrations of iMedNet , MedNet,s easy-to-use, proven ... has been able to deliver time and cost savings ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... ... December 01, 2015 , ... The American Society of ... J. Kyle Mathews will join fellow surgeons in the shared pursuit of ... An experienced urogynecologist, founder of Plano Urogynecology Associates and Fellow of the ...
(Date:11/30/2015)... ... November 30, 2015 , ... Global ... Practice (GMP) 10000 in the Santiago Marriott. The Global Stem Cells Group GMP ... a world-class team of qualified medical researchers and practitioners, experienced in administering stem ...
(Date:11/30/2015)... N.Y. , Nov. 30, 2015  Culprits ... by assistant chemistry professor Jan Halámek, is taking ...   --> ...   --> ... at UAlbany have discovered a straightforward concept for ...
(Date:11/30/2015)... , Nov. 30, 2015  Champions Oncology, Inc. (CSBR), ... services to personalize the development and use of oncology ... Executive Officer, will be presenting at the LD MICRO ... Pacific Standard Time (PST).  The conference, held at the ... Angeles, CA , will feature 200 small/micro-cap companies ...
Breaking Biology Technology: