Navigation Links
How the dragon got its 'snap'
Date:11/9/2010

"How do hearts, wings or flowers get their shape?" asks Professor Enrico Coen from the John Innes Centre. " Unlike man-made things like mobile phones or cars, there is no external hand or machine guiding the formation of these biological structures; they grow into particular shapes of their own accord."

"Looking at the complex, beautiful and finely tuned shapes produced by nature, people have often wondered how they came about. We are beginning to understand the basic genetic and chemical cues that nature uses to make them."

So, how does this happen? In a recent breakthrough, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), scientists on Norwich Research Park have begun to answer this question, using the snapdragon flower as a convenient subject.

In the snapdragon flower, two upper petals and three lower petals form defined shapes, precisely coming together to form a tube with a hinge. When a bee lands on the lower petals the hinge opens up the flower, allowing access to nectar and pollen. The shape of petals is known to be affected by four genes, but precisely how these genes work in combination to produce the specialised flower shape, and how this shape evolved, was unknown. The same is true for many organ shapes, but the snapdragon flower provides a good system to study this problem, as it is genetically well characterised and growth can be followed at the cellular level.

By changing when and how the genes involved in growth are turned on and off, and tracking how these changes affect the development of shape over time, the researchers got pointers as to how genes control the overall shape. They then used computer modelling to show how the flower could generate itself automatically through the application of some basic growth rules.

A key finding was that genes control not only how quickly different regions of the petal grow, but also their orientations of growth. It is as if each cell has a chemical compass that allows it to get its bearings within the tissue, giving it the information needed to grow more in some directions than others. Genes also influence the cell's equivalent of magnetic poles; key regions of tissue that chemical compasses point to. Publishing in the journal PLoS Biology, the researchers show how these principles allow very complex biological shapes to generate themselves.

"We are now trying to get a better understanding of exactly how the chemical compasses work and determining the molecular nature of the poles that coordinate their orientations," said Professor Enrico Coen of the John Innes Centre.

The study also throws light on how different shapes may evolve. In the computational model, small changes to the genes that influence the growth rules produce a variety of different forms. The shape of the snapdragon flower, with the closely matched upper and lower petal shapes, could have arisen through similar 'genetic tinkering' during evolution. Evolutionary tinkering could also underlie the co-ordinated changes required for the development of many other biological structures, such as the matched upper and lower jaws of vertebrates.


'/>"/>

Contact: Andrew Chapple
andrew.chapple@bbsrc.ac.uk
44-016-032-51490
Norwich BioScience Institutes
Source:Eurekalert  

Related biology news :

1. A combined tooth-venom arsenal revealed as key to Komodo dragons hunting strategy
2. Halloween horror story -- tale of the headless dragonfly
3. Shrimp trawling may boost mercury in red snapper, study suggests
4. Structural biology scores with protein snapshot
5. Spring cold snap helps with stream ecosystem research
6. Atomic-level snapshot catches protein motor in action
7. Ancient Americans took cold snap in their stride
8. Temple University Hospital and PASNAP Negotiations Break Off: Talks to Resume Later Today
9. 100-million-year-old mistake provides snapshot of evolution
10. Snap of fruit fly embryo wins scientific photo competition
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How the dragon got its 'snap'
(Date:5/9/2016)... , UAE, May 9, 2016 ... it comes to expanding freedom for high net worth ... Even in today,s globally connected world, there is still ... system could ever duplicate sealing your deal with a ... second passports by taking advantage of citizenship via investment ...
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
(Date:4/15/2016)... April 15, 2016 Research ... Gait Biometrics Market 2016-2020,"  report to their offering.  ... ) , ,The global gait biometrics market is ... during the period 2016-2020. Gait analysis ... can be used to compute factors that are ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Parallel 6 , the leading software as a service ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication ... , Using the CONSULT module, patients and physicians can schedule a face to face ...
(Date:6/24/2016)... -- Regular discussions on a range of subjects including policies, debt ... said Poloz. Speaking at a lecture to the ... pointed to the country,s inflation target, which is set by ... "In certain areas there needs to ... goals, why not sit down and address strategy together?" ...
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, into ... for over 35 years, is proud to add Target to its list of ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. , ... tests introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial ...
Breaking Biology Technology: