Navigation Links
How the dragon got its 'snap'
Date:11/9/2010

"How do hearts, wings or flowers get their shape?" asks Professor Enrico Coen from the John Innes Centre. " Unlike man-made things like mobile phones or cars, there is no external hand or machine guiding the formation of these biological structures; they grow into particular shapes of their own accord."

"Looking at the complex, beautiful and finely tuned shapes produced by nature, people have often wondered how they came about. We are beginning to understand the basic genetic and chemical cues that nature uses to make them."

So, how does this happen? In a recent breakthrough, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), scientists on Norwich Research Park have begun to answer this question, using the snapdragon flower as a convenient subject.

In the snapdragon flower, two upper petals and three lower petals form defined shapes, precisely coming together to form a tube with a hinge. When a bee lands on the lower petals the hinge opens up the flower, allowing access to nectar and pollen. The shape of petals is known to be affected by four genes, but precisely how these genes work in combination to produce the specialised flower shape, and how this shape evolved, was unknown. The same is true for many organ shapes, but the snapdragon flower provides a good system to study this problem, as it is genetically well characterised and growth can be followed at the cellular level.

By changing when and how the genes involved in growth are turned on and off, and tracking how these changes affect the development of shape over time, the researchers got pointers as to how genes control the overall shape. They then used computer modelling to show how the flower could generate itself automatically through the application of some basic growth rules.

A key finding was that genes control not only how quickly different regions of the petal grow, but also their orientations of growth. It is as if each cell has a chemical compass that allows it to get its bearings within the tissue, giving it the information needed to grow more in some directions than others. Genes also influence the cell's equivalent of magnetic poles; key regions of tissue that chemical compasses point to. Publishing in the journal PLoS Biology, the researchers show how these principles allow very complex biological shapes to generate themselves.

"We are now trying to get a better understanding of exactly how the chemical compasses work and determining the molecular nature of the poles that coordinate their orientations," said Professor Enrico Coen of the John Innes Centre.

The study also throws light on how different shapes may evolve. In the computational model, small changes to the genes that influence the growth rules produce a variety of different forms. The shape of the snapdragon flower, with the closely matched upper and lower petal shapes, could have arisen through similar 'genetic tinkering' during evolution. Evolutionary tinkering could also underlie the co-ordinated changes required for the development of many other biological structures, such as the matched upper and lower jaws of vertebrates.


'/>"/>

Contact: Andrew Chapple
andrew.chapple@bbsrc.ac.uk
44-016-032-51490
Norwich BioScience Institutes
Source:Eurekalert  

Related biology news :

1. A combined tooth-venom arsenal revealed as key to Komodo dragons hunting strategy
2. Halloween horror story -- tale of the headless dragonfly
3. Shrimp trawling may boost mercury in red snapper, study suggests
4. Structural biology scores with protein snapshot
5. Spring cold snap helps with stream ecosystem research
6. Atomic-level snapshot catches protein motor in action
7. Ancient Americans took cold snap in their stride
8. Temple University Hospital and PASNAP Negotiations Break Off: Talks to Resume Later Today
9. 100-million-year-old mistake provides snapshot of evolution
10. Snap of fruit fly embryo wins scientific photo competition
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How the dragon got its 'snap'
(Date:4/13/2017)... April 13, 2017 According to a new market ... Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, ... Market is expected to grow from USD 14.30 Billion in 2017 to ... of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Bay, Florida (PRWEB) , ... October 11, 2017 ... ... and Drug Administration (FDA) has granted orphan drug designation to SBT-100, its novel ... (sdAb) for the treatment of osteosarcoma. SBT-100 is able to cross the cell ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... Poway, California (PRWEB) , ... October 10, 2017 , ... ... afternoon speaking at his local San Diego Rotary Club. The event ... San Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
Breaking Biology Technology: