Navigation Links
How plants put down roots
Date:3/15/2010

In the beginning is the fertilized egg cell. Following numerous cell divisions, it then develops into a complex organism with different organs and tissues. The largely unexplained process whereby the cells simply "know" the organs into which they should later develop is an astonishing phenomenon. Scientists from the Center for Plant Molecular Biology (ZMBP) of the University of Tbingen and the University of Wageningen, in cooperation with colleagues from the Max Planck Institute for Developmental Biology, have investigated how this process is controlled. Based on their studies of the thale cress, Arabidopsis thaliana, they have succeeded in demonstrating how the plant forms its first roots: the root founder cell in the tiny group of cells contained in the seed is activated by a combination of a plant hormone and a transcription factor. These insights could contribute to the breeding of plants with a particularly effective root system in the future. (Nature, advance online publication on March 10, 2010)

In the seed of the thale cress, the embryo forms from the fertilised egg cell that initially divides into two daughter cells. One of these two cells later goes on to form almost the entire embryo, while the other generates connective tissue that anchors the embryo in the endosperm or nutritive tissue. When the embryo has grown into a small cluster of cells, the connective tissue cell that borders the embryo is stimulated by activating signals to become part of the embryo and form the root tissue. The scientists studied these processes in detail under the supervision of Gerd Jrgens and Dolf Weijers and succeeded in identifying several of the players involved in this complex regulatory network.

The formation of the root tissue depends firstly on the accumulation of the plant hormone auxin, which is channelled to the root founder cell by the embryo. This process is reinforced by the transcription factor MONOPTEROS. However, this is not sufficient on its own. The researchers concluded that MONOPTEROS must deliberately activate other genes. In a comprehensive survey of all of the genes activated by MONOPTEROS, they identified two genes that already play a role in embryonic development: TMO5 and TMO7 (TMO = Target of MONOPTEROS). Both of these genes are required for the formation of the root tissue. For this purpose, the protein formed by the TMO7 gene must migrate from the location of its emergence in the embryo to the root founder cell. "With TM07 we have identified a hitherto unknown intercellular signal for root formation in the embryo," says Gerd Jrgens. The detective work in the plant researchers' genetics laboratory does not end here, however. "Because the transcription factor TM07 is involved in other regulatory network of plant development, there can be no doubt that it holds further insights in store for us," says Jrgens.


'/>"/>

Contact: Gerd Jrgens
gerd.juergens@zmbp.uni-tuebingen.de
49-707-160-11309
Max-Planck-Gesellschaft
Source:Eurekalert

Related biology news :

1. Layered approach may yield stronger, more successful bone implants
2. Clever plants chat over their own network
3. Plants can be used to study how and why people respond differently to drugs
4. Book on weeds and invasive plants discusses how to manage them using ecological approaches
5. A greenhouse in order to study the impact of climate change on plants
6. Agent that triggers immune response in plants is uncovered
7. Scientists ramp up ability of poplar plants to disarm toxic pollutants
8. A new baseline of invasive plants in Isabela
9. Hungry microbes share out the carbon in the roots of plants
10. Scientists warn that species extinction could reduce productivity of plants on Earth by half
11. Cell transplants may improve severe urinary incontinence
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/24/2016)... -- Cercacor today introduced Ember TM Sport Premium ... measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion Index, ... approximately 30 seconds. Smaller than a smartphone, using only ... key data about their bodies to help monitor these ... Hemoglobin carries oxygen to muscles. When hemoglobin and ...
(Date:11/19/2016)... Securus Technologies, a leading provider of civil ... corrections and monitoring, announced today that it has offered ... an independent technology judge determine who has the largest ... telephone calling platform, and the best customer service. ... of what we do – which clearly is not ...
(Date:11/15/2016)... ROCKVILLE, Md. , Nov. 15, 2016 /PRNewswire/ ... clinical company developing therapeutics focused on the gut ... public offering of 25,000,000 shares of its common ... its common stock at a price to the ... gross proceeds to Synthetic Biologics from the offering, ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... (PRWEB) , ... December 02, ... ... (ETC), a consortium of pharmaceutical and biotechnology companies dedicated to collaboratively developing ... companies interested in supplying a vendor-supported, portable online UHPLC, with robust, probe-based ...
(Date:12/2/2016)... , December 2, 2016 The ... 2021, growing at a CAGR of 7.3% during the forecast period ... hospitals and diagnostic laboratories segment accounted for the largest share of ... ... report on global immunohistochemistry (IHC) market spread across 225 pages, profiling ...
(Date:11/30/2016)... 30, 2016  GenomOncology today announced the appointment of ... Affairs.  Dr. Coleman will oversee clinical content ... knowledge-enabled platform. The GenomOncology software suite empowers molecular pathologists with ... and clinical decision support, from quality control through reporting. ... , , ...
(Date:11/30/2016)... 2016 Biotest Pharmaceuticals Corporation (BPC), a leading ... the addition of its newest plasma collection center located ... . The 15,200 square foot state-of-the-art facility officially opened ... brings the total number of BPC,s plasma collection centers ... BPC,s Chief Executive Officer said "We are pleased to ...
Breaking Biology Technology: