Navigation Links
How parasites modify plants to attract insects
Date:11/8/2011

Pathogens can alter their hosts, for example malaria parasites can make humans more attractive to mosquitoes, but how they do it has remained a mystery. Scientists from the John Innes Centre on Norwich Research Park have identified for the first time a specific molecule from a parasite that manipulates plant development to the advantage of the insect host.

"Our findings show how this pathogen molecule can reach beyond its host to alter a third organism," said Dr Saskia Hogenhout from JIC.

Leaf hoppers are tiny sap-sucking, highly mobile and opportunistic agricultural pests. Certain species can acquire and transmit plant pathogens including viruses and phytoplasmas, which are small bacteria. Dr Hogenhout and her team focused on a phytoplasma strain called Aster Yellows Witches' Broom, which causes deformity in a diverse range of plants.

"It is timely to better understand phytoplasmas as they are sensitive to cold and could spread to new areas as temperatures rise through climate change," said Dr Hogenhout.

Infected plants grow clusters of multiple stems which can look like a witches' broom or in trees like a bird's nest. The strain was originally isolated from infected lettuce fields in North America.

The phytoplasma depends on both the leafhopper and the plant host for survival, replication and dispersal. The new findings show how it manipulates the interaction of the plant host and insect vector to its advantage.

The scientists sequenced and examined the genome of the witches broom phytoplasma and identified 56 candidate molecules, called effector proteins, which could be key to this complex biological interaction.

They found that a protein effector SAP11 reduces the production of a defence hormone in the plant that is used against the leafhopper. As a consequence, leafhoppers reared on plants infected with witches broom laid more eggs and produced more offspring. The leafhoppers may also be attracted to lay eggs in the bunched branches and stems.

The higher fecundity rate is probably matched by a similar increased rate in transmission of the witches broom phytoplasma by leafhoppers to other plants.

"Phytoplasmas that can enhance egg-laying and offspring numbers in leafhoppers are likely to have a competitive advantage," said Dr Hogenhout.

Given their opportunistic nature, the leafhoppers are likely to migrate to uninfected plants and spread the pathogen.

"This is a vivid example of the extended phenotype, a concept put forward by Richard Dawkins, where an organism's phenotype is based not only on the biological processes within it but also on its impact on its environment," said Dr Hogenhout.

The research was funded by the Biotechnology and Biological Sciences Research Council and The Gatsby Charitable Foundation. It will be published in PNAS.


'/>"/>

Contact: Zoe Dunford
zoe.dunford@nbi.ac.uk
44-160-325-1490
Norwich BioScience Institutes
Source:Eurekalert  

Related biology news :

1. Scripps Florida scientists awarded $1.5M to fight major water and food parasites
2. Locking parasites in host cell could be new way to fight malaria
3. Immune genes adapt to parasites
4. Study finds role for parasites in evolution of sex
5. Discovery to aid in future treatments of third-world parasites
6. Parasites ready to jump
7. Penn researchers identify immune cells that fight parasites may promote allergies and asthma
8. Immune evasion common in many viruses, bacteria and parasites is uncommon in M. tuberculosis
9. Discovery offers hope of saving sub-Saharan crops from devastating parasites
10. MIT researchers study the danger of toxoplasma parasites
11. Comparison of genomes of plant parasites provides solid clues for response
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How parasites modify plants to attract insects
(Date:6/1/2016)... NEW YORK , June 1, 2016 ... Biometric Technology in Election Administration and Criminal Identification to ... According to a recently released TechSci Research report, " ... Sector, By Region, Competition Forecast and Opportunities, 2011 - ... $ 24.8 billion by 2021, on account of growing ...
(Date:5/16/2016)... May 16, 2016   EyeLock LLC , a ... the opening of an IoT Center of Excellence in ... expand the development of embedded iris biometric applications. ... of convenience and security with unmatched biometric accuracy, making ... aside from DNA. EyeLock,s platform uses video technology to ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... STACS DNA ... Technical Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a ... STACS DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further ...
(Date:6/23/2016)... -- Andrew D Zelenetz , ... Published recently in Oncology & ... Andrew D Zelenetz , discusses the fact ... placing an increasing burden on healthcare systems worldwide, ... the patents on many biologics expiring, interest in ...
Breaking Biology Technology: