Navigation Links
How much a single cell breathes
Date:5/13/2013

How active a living cell is can be seen by its oxygen consumption. The method for determining this consumption has now been significantly improved by chemists in Bochum. The problem up to now was that the measuring electrode altered the oxygen consumption in the cell's environment much more than the cell itself. "We already found that out twelve years ago," says Prof. Dr. Wolfgang Schuhmann from the Department of Analytical Chemistry at the Ruhr-Universitt. "Now we have finally managed to make the measuring electrode an spectator." Together with his team, he reports in the "International Edition" of the journal "Angewandte Chemie".

Precise positioning of the measuring electrodes

Cells need oxygen for various metabolic processes, for example to break down glucose. To measure its consumption, researchers have to detect very small signals in a large background noise. For this they use scanning electrochemical microscopy, for which they need to position electrodes with a diameter of five micrometres or below at a distance of 200 nanometres from the cell. To this end, the RUB team has developed a special process over the last few years, with which the distance of the electrode to the cell can be precisely controlled.

Making competition to the cells with microelectrodes

Using the electrode, the researchers first generate oxygen in the aqueous environment of the cell, and then they measure how much of this oxygen the cell utilises. For this purpose, they give the electrode a certain potential at the beginning. This has the effect that electrons are extracted from water in the cell environment under formation of oxygen. The cell can use the oxygen for its metabolism; however, at the same time, the microelectrode applied by the researchers competes against it. They change the potential at the electrode so that the reaction reverses: oxygen is now converted to water. The scientists use the electrode to measure the electrons flowing and thus obtain a measure of the oxygen consumption in the local environment. The more oxygen the cell uses for its metabolism, the less oxygen is left for the current-generating reaction at the electrode. Thus, the lower the current flow measured, the greater the activity of the cell. This method is termed the redox competition mode.

Rapid measurement

In the methods used so far, the oxygen consumption caused by the electrode was significantly higher than that of the cell. "The measurement itself thus caused a stronger local change in the oxygen concentration than the cell metabolism," explains Prof. Schuhmann. It was essential to measure the activity of the cell very quickly after the oxygen was generated at the microelectrode, i.e. after twenty milliseconds. If you wait longer, the electrode deprives the cell of oxygen instead of using the oxygen from the environment that the researchers had artificially created in advance. Three factors were therefore crucial for the success of the Bochum method: the highly accurate position of the electrodes, the redox competition mode and the rapid measuring time.


'/>"/>

Contact: Dr. Wolfgang Schuhmann
wolfgang.schuhmann@rub.de
49-234-322-6200
Ruhr-University Bochum
Source:Eurekalert

Related biology news :

1. Cat and mouse: A single gene matters
2. Dartmouth researchers find there is no single sexy chin
3. Sleator lab identifies single point mutation in Listeria monocytogenes
4. Single gene might explain dramatic differences among people with schizophrenia
5. Extremely high estrogen levels may underlie complications of single-birth IVF pregnancies
6. Little did we know about beetle diversity: Astonishing 138 new species in a single genus
7. Light-emitting bioprobe fits in a single cell
8. They hunt, they kill, they cheat: Single-celled algae shed light on social lives of microbes
9. NIH awards Penn scientists $10 million over 5 years for innovative research on single cells
10. Single protein targeted as the root biological cause of several childhood psychiatric disorders
11. New study reveals that every single junk food meal damages your arteries
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2016)... ALBANY, New York , January 13, 2016 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2023. According to ... mn in 2014 and is anticipated to reach US$1,625.8 ... from 2015 to 2023. In terms of volume, the ...
(Date:1/11/2016)... 11, 2016 Synaptics Incorporated (NASDAQ: SYNA ... announced that its ClearPad ® TouchView ™ ... two separate categories in the 8 th Annual ... Technology Breakthrough. The Synaptics ® TDDI solution enables ... chain, thinner devices, brighter displays and borderless designs. ...
(Date:1/8/2016)... MANCHESTER, United Kingdom , Jan. 8, 2016   ... diagnostic products, today announced the closing of a $9 million ... Proceeds from the financing will be used to accelerate the ... for detecting early-stage pressure ulcers. United ... receiving CE Mark approval. The device,s introduction has been met ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... 2016  Spherix Incorporated (Nasdaq: SPEX ) -- an intellectual ... of intellectual property, today provided an update on the ... District of Texas and announcing ... Inter Partes Re-examination ("IPR") proceedings that VTech and ... was initiated on only certain claims of two of ...
(Date:2/4/2016)... Brooklyn, NY (PRWEB) , ... February 04, 2016 , ... ... cuvettes for over 10 years. What sets them apart from other cuvette ... that is posted on their website. On top of this steady flow of ...
(Date:2/3/2016)... Feb. 3, 2016 Ascendis Pharma A/S (Nasdaq: ... applies its innovative TransCon technology to address significant unmet ... upcoming investor conference.Event:2016 Leerink Partners Global Healthcare Conference Location: ... Wednesday, February 10, 2016 Time:  , 11:55am EST ... --> An audio webcast of this event ...
(Date:2/3/2016)... ... February 03, 2016 , ... ... of potential targets (epitopes) specific to misfolded, propagating strains of Amyloid beta involved ... monoclonal antibody therapeutics for Alzheimer’s. , Following on from the first misfolded Amyloid ...
Breaking Biology Technology: