Navigation Links
How mitochondrial gene defects impair respiration, other major life functions
Date:9/24/2009

Researchers are delving into abnormal gene function in mitochondria, structures within cells that power our lives. Mitochondria are the place where energy is generated from the most basic molecules of food. Because this function is essential to life, defects in mitochondria may affect a wide range of organ systems in humans and animals.

Some names of mitochondrial disorders are Leigh's disease, MELAS syndrome and complex I deficiency. These are often severe and progressive conditions that attack brain, muscles and numerous other parts of the body.

Mitochondrial diseases are individually very rare, but because hundreds of them exist, they collectively have a large impact, affecting at least 1 in 5,000 people, and perhaps more, who often remain undiagnosed. In addition to a wide array of diseases originating in the mitochondria itself, malfunctioning mitochondria also contribute to complex disorders like Parkinson's disease, Alzheimer's disease, epilepsy and diabetes, among others.

For such crucial biological actors, much remains unknown about exactly how mitochondria function. A new study, published Aug. 12 in the online journal PLoS One, sheds light on mitochondrial biology.

Using genetic engineering, researchers interrupted the activity of individual genes directly involved in the production of energy within mitochondria. "If we knock down the function of specific system components, what happens?" said study leader Marni J. Falk, M.D., who directs the Mitochondrial-Genetics Disease Clinic at The Children's Hospital of Philadelphia. "Our ultimate goal is to translate the knowledge into targeted therapies, that is, effective ways to intervene. But first we need to understand the underlying disease mechanisms."

Falk's team made use of a simple model organism often studied in biology, Caenorhabditis elegans, which is a small worm called a nematode. Because mitochondria arose very early in evolution and play such fundamental roles in multicellular organisms, learning the details of how mitochondria function in C. elegans provides useful clues to understanding their function in humans.

Falk and colleagues studied a biological pathway that occurs within mitochondria, called the respiratory chain. They specifically focused on the largest component of that chain, complex I, which contains 45 subunits and is the most common culprit in human mitochondrial disease.

Her team studied the nuclear genes for 28 different complex I subunits that are very similar between humans and C. elegans, as well as two genes that help assemble the subunits into a functioning complex. By using a technique called RNA interference to knock out the function of each gene, they were able to determine how gene defects may contribute to mitochondrial diseases.

The study team found that one subset of genes impairs the ability of mitochondria to consume oxygen, called respiratory capacity, in C. elegans. Another group affects how the worms react to anesthesia. "Some children with mitochondrial complex I disease are hypersensitive to anesthesia, so this new understanding may be important in guiding their clinical management," said Falk.

Because mitochondrial diseases in humans comprise a large number of different disorders showing a wide range of severity, understanding the differences in contributions from different genes within the respiratory chain may help researchers better understand why mitochondrial dysfunction causes specific problems in people. Even better, says Falk, such research points to genes that might be targeted in potential treatments.

Dr. Falk's team continues to work to explore the many different consequences of mitochondrial respiratory chain dysfunction in animal models, and ways in which these consequences might themselves be treated. This work helps to suggest specific genes that may be the cause of mitochondrial disease in individual patients, as well as clarify the biology of how specific genes may cause disease. "Such work might one day benefit patients by pointing to specific drugs that alleviate secondary problems that arise when the respiratory chain cannot do its job," added Falk.


'/>"/>

Contact: John Ascenzi
Ascenzi@email.chop.edu
267-426-6055
Children's Hospital of Philadelphia
Source:Eurekalert

Related biology news :

1. Large reservoir of mitochondrial DNA mutations identified in humans
2. Mitochondrial cholesterol makes response to chemotherapy difficult in hepatic cancer
3. Hebrew University develops novel approach for treating mitochondrial disorders
4. Mitochondrial dysfunction and redox signaling in atrial tachyarrhythmia
5. Zebrafish to shed light on human mitochondrial diseases
6. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
7. Essential nutrient found in eggs may help lower risk of neural tube defects
8. Embryology study offers clues to birth defects
9. Folic acid to prevent congenital heart defects
10. Low levels of vitamin B12 may increase risk for neural tube defects
11. Case Western Reserve University uncovers genetic basis for some birth defects
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)... Lithuania , May 3, 2016  Neurotechnology, ... released the MegaMatcher Automated Biometric Identification System ... of large-scale multi-biometric projects. MegaMatcher ABIS can process ... accuracy using any combination of fingerprint, face or ... MegaMatcher SDK and MegaMatcher Accelerator ...
(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
Breaking Biology News(10 mins):
(Date:5/22/2016)... ... 2016 , ... Doctors in Rome say micronutrients found in certain foods have ... Mesothelioma has just posted an article on the new research. Click here to ... Sciences and Translational Medicine evaluated more than 150 studies on polyphenols in cancer for ...
(Date:5/20/2016)... NC (PRWEB) , ... May 20, 2016 , ... Korean ... suggesting that it may offer a new way to treat the disease. Surviving Mesothelioma ... it now. , Scientists from several Korean institutions based their mesothelioma study on ...
(Date:5/19/2016)... British Columbia , May 19, 2016 /PRNewswire/ ... Global Innovations Inc. (AGI), based out of ... added Greenlane Biogas Ltd. to its existing portfolio ... contract manufacturing agreement. AFS along with its sister ... (ABT) is a vertically integrated industrial group that ...
(Date:5/19/2016)... DIEGO , May 19, 2016 ... (OTC PINK: RGBP) and (OTC PINK: RGBPP) announced today ... creating the first cord blood based cancer immunotherapeutic ... provisional patent application, Regen described a generation of ... was potentiated by gene silencing.  The product in ...
Breaking Biology Technology: