Navigation Links
How herpesvirus invades nervous system

(Chicago) Northwestern Medicine scientists have identified a component of the herpesvirus that "hijacks" machinery inside human cells, allowing the virus to rapidly and successfully invade the nervous system upon initial exposure.

Led by Gregory Smith, associate professor in immunology and microbiology at Northwestern University Feinberg School of Medicine, researchers found that viral protein 1-2, or VP1/2, allows the herpesvirus to interact with cellular motors, known as dynein. Once the protein has overtaken this motor, the virus can speed along intercellular highways, or microtubules, to move unobstructed from the tips of nerves in skin to the nuclei of neurons within the nervous system.

This is the first time researchers have shown a viral protein directly engaging and subverting the cellular motor; most other viruses passively hitch a ride into the nervous system.

"This protein not only grabs the wheel, it steps on the gas," says Smith. "Overtaking the cellular motor to invade the nervous system is a complicated accomplishment that most viruses are incapable of achieving. Yet the herpesvirus uses one protein, no others required, to transport its genetic information over long distances without stopping."

Herpesvirus is widespread in humans and affects more than 90 percent of adults in the United States. It is associated with several types of recurring diseases, including cold sores, genital herpes, chicken pox, and shingles. The virus can live dormant in humans for a lifetime, and most infected people do not know they are disease carriers. The virus can occasionally turn deadly, resulting in encephalitis in some.

Until now, scientists knew that herpesviruses travel quickly to reach neurons located deep inside the body, but the mechanism by which they advance remained a mystery.

Smith's team conducted a variety of experiments with VP1/2 to demonstrate its important role in transporting the virus, including artificial activation and genetic mutation of the protein. The team studied the herpesvirus in animals, and also in human and animal cells in culture under high-resolution microscopy. In one experiment, scientists mutated the virus with a slower form of the protein dyed red, and raced it against a healthy virus dyed green. They observed that the healthy virus outran the mutated version down nerves to the neuron body to insert DNA and establish infection.

"Remarkably, this viral protein can be artificially activated, and in these conditions it zips around within cells in the absence of any virus. It is striking to watch," Smith says.

He says that understanding how the viruses move within people, especially from the skin to the nervous system, can help better prevent the virus from spreading.

Additionally, Smith says, "By learning how the virus infects our nervous system, we can mimic this process to treat unrelated neurologic diseases. Even now, laboratories are working on how to use herpesviruses to deliver genes into the nervous system and kill cancer cells."

Smith's team will next work to better understand how the protein functions. He notes that many researchers use viruses to learn how neurons are connected to the brain.

"Some of our mutants will advance brain mapping studies by resolving these connections more clearly than was previously possible," he says.

Contact: marla Paul
Northwestern University

Related biology news :

1. The raccoon spreads dangerous diseases as it invades Europe
2. A minute crustacean invades the red swamp crayfish
3. American Oak Skeletonizer moth invades Europe
4. Ben-Gurion U. licenses drug delivery platform for central nervous system diseases to NY biotech firm
5. Knee injuries in women linked to motion, nervous system differences
6. To spread, nervous system viruses sabotage cell, hijack transportation
7. Clues to nervous system evolution found in nerve-less sponge
8. Researchers find a better way to culture central nervous cells
9. IU biologists offer clearer picture of how protein machine systems tweak gene expression
10. Unexpected crustacean diversity discovered in northern freshwater ecosystems
11. Hot meets cold at new deep-sea ecosystem: Hydrothermal seep
Post Your Comments:
(Date:5/6/2017)... 2017 RAM Group , Singaporean ... breakthrough in biometric authentication based on a ... to perform biometric authentication. These new sensors are based ... by Ram Group and its partners. This sensor will ... chains and security. Ram Group is a next ...
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at  under ... . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... For the ... won a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to ... Experience from US2020. , US2020’s mission is to change the trajectory of STEM ...
(Date:10/10/2017)... ... October 10, 2017 , ... USDM ... firm for the life sciences and healthcare industries, announces a presentation by Subbu ... , The presentation, “Automating GxP Validation for Agile Cloud Platforms,” will present a ...
(Date:10/9/2017)... ... 09, 2017 , ... At its national board meeting in North Carolina, ... University’s Departments of Physics and Astronomy, has been selected for membership in ARCS ... for the 2015 Breakthrough Prize in Fundamental physics for the discovery of the accelerating ...
(Date:10/7/2017)... ... October 06, 2017 , ... ... technologies, launched its ProxiMeta™ Hi-C metagenome deconvolution product, featuring the first commercially ... cloud-based bioinformatics software to perform Hi-C metagenome deconvolution using their own facilities, ...
Breaking Biology Technology: