Navigation Links
How do bacteria swim? Brown physicists explain
Date:11/19/2008

PROVIDENCE, R.I. [Brown University] Imagine yourself swimming in a pool: It's the movement of your arms and legs, not the viscosity of the water, that mostly dictates the speed and direction that you swim.

For tiny organisms, the situation is different. Microbes' speed and direction are subjected more to the physical vagaries of the fluid around them.

"For bacteria to swim in water," explained Jay Tang, associate professor of physics at Brown University, "it's like us trying to swim through honey. The drag is dominant."

Tang and his team at Brown have just completed the most detailed study of the swimming patterns of one particular bacterium, Caulobacter crescentus. In a paper published online this week in the Proceedings of the National Academy of Sciences (in print Nov. 25), the researchers show how this microbe's movement is affected by drag and a phenomenon called Brownian motion. The observations would appear to hold true for many other bacteria, Tang said, and shed light on how these organisms scavenge for food and how they approach surfaces and "stick" to them.

Caulobacter is a single-celled organism with a filament-like tail called a flagellum. As it swims, its rounded cellular head rotates in one direction, while the tail rotates in the opposite direction. This creates torque, which helps explain the bacterium's nonlinear movement through a fluid. What Tang and his team found, however, is that Caulobacter also is influenced by Brownian motion, which is the zigzagging motion that occurs when immersed particles are buffeted by the actions of the molecules of the surrounding medium. What that means, in effect, is that Caulobacter is being pinballed by the water molecules surrounding it as it swims.

This twin effect of hydrodynamic interaction and Brownian motion governs the circular swimming patterns of Caulobacter and many other microorganisms, the scientists found.

"Random forces are always more important the smaller the object is," said Tang, whose team included Guanglai Li, assistant professor of physics (research) at Brown, and Lick-Kong Tam, a recent Brown graduate who is now studying biomedical engineering at Yale University. "At Caulobacter's size, the random forces become dominant."

The researchers also discovered another clue to the swimming behavior: Caulobacter's swimming circles grew tighter as the bacterium got closer to a surface boundary, in this case a glass slide. The tighter circle, the team found, is the result of more drag being exerted on the microbe as it swims closer to the surface. When the microbe was farther away from the surface, it encountered less drag, and its swimming circle was wider, the group learned.

It's this zigzagging effect that helps explain why "most of the time, these cells are not as close to the surface as they are predicted to be," Tang said. "The reason is Brownian motion, because they are jumping around."

That finding is important, because it helps explain the feedings areas for simple-celled organisms. Perhaps more importantly, it may help scientists understand how bacteria ultimately arrive at a surface and adhere to it. The applications range from better understanding the flow and adhesion of platelets in the bloodstream to greater insights into how contaminants are captured as they percolate through the soil.

"As it turns out, swimming is an important mechanism to that adhesion process," Tang said.


'/>"/>

Contact: Richard Lewis
Richard_Lewis@Brown.edu
401-863-3766
Brown University
Source:Eurekalert  

Related biology news :

1. Shuttle brings space-grown strep bacteria back for study
2. The worlds oldest bacteria
3. Bacteria from sponges make new pharmaceuticals
4. Boston University biomedical engineers find chink in bacterias armor
5. University of Leicester scientists discover technique to help friendly bacteria
6. Spaceflight shown to alter ability of bacteria to cause disease
7. A tiny pinch from a z-ring helps bacteria cells divide
8. Legionnaires bacterial proteins work together to survive
9. Scripps research team blocks bacterial communication system to prevent deadly staph infections
10. NSF awards Stevens team $1 million for research on smart, bacteria-repellent nanohydrogels
11. Chemical compound present in detergents produce bacteria alterations in agricultural soils
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How do bacteria swim? Brown physicists explain
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... , March 30, 2017  On April 6-7, 2017, ... the Genome hackathon at Microsoft,s headquarters in ... competition will focus on developing health and wellness apps ... Hack the Genome is the first hackathon ... The world,s largest companies in the genomics, tech and ...
(Date:3/29/2017)... , March 29, 2017  higi, the health IT ... North America , today announced a ... the acquisition of EveryMove. The new investment and acquisition ... of tools to transform population health activities through the ... data. higi collects and secures data today ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... the pharmaceutical and biotechnology industries to improve patient outcomes and quality of life, ... in analytical testing are being attributed to new regulatory requirements for all new ...
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back for its ... 2018 in San Francisco, CA. The Summit brings together current and former FDA office ... directors and government officials from around the world to address key issues in device ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... compared the implantation and pregnancy rates in frozen and fresh in vitro ... of progesterone and maternal age to IVF success. , After comparing the results ...
(Date:10/10/2017)... California (PRWEB) , ... October 10, 2017 , ... Dr. ... speaking at his local San Diego Rotary Club. The event entitled ... Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by ...
Breaking Biology Technology: