Navigation Links
How cells keep in shape
Date:12/2/2007

Cells in our body come in various shapes and sizes. Each cell is shaped in such a way as to optimise it for a specific function. When things go wrong and a cell does not adopt its dedicated shape, its function can be impaired and the cell can cause problems in the body. Researchers at the European Molecular Biology Laboratory (EMBL) and the Institute for Atomic and Molecular Physics (AMOLF), The Netherlands, have now decoded a molecular mechanism that plays an important role in the development of a cells shape. In this weeks issue of Nature they report a new experimental approach that sheds light on the interaction between proteins and the cells skeleton.

That each cell type has its unique shape is due to its cytoskeleton, an internal scaffold built of protein filaments. Especially important are microtubules, dynamic filaments that constantly grow and shrink. Their spatial organisation inside cells depends on a variety of regulator proteins, some of which only interact with the growing ends of these filament. How these so called plus-end tracking proteins recognise the dynamic structure of a growing microtubule end is a long-standing puzzle. Researchers in the groups of Thomas Surrey and Damian Brunner at EMBL and of Marileen Dogetrom at AMOLF have now developed the first method that allows to simultaneously study multiple plus-end tracking molecules, so called +TIPs, in the test tube.

+TIPs specifically bind to the fast-growing plus end of a microtubule and follow it as it grows. They act as a plus-end label so that other proteins know where to bind to regulate the filaments stability, says Surrey. For years it has been impossible to reconstitute this behaviour in a test tube. Our new system now revealed which proteins need to be present for plus-end tracking and what the underlying mechanisms are.

Applying the new method they succeeded in dissecting a minimal molecular system consisting of three end tracking proteins from yeast cells. The proteins were labelled with fluorescence to monitor their behaviour with a microscope. This procedure revealed that one of the proteins has the ability to recognise the specific structure of the growing microtubule tip, binds to it and acts as a loading platform for the other two proteins. The inherent motor activity of one of the other two proteins, which allows it to walk along microtubules, contributes to the ability of the molecular system to follow growing microtubule ends selectively.

The great advantage of our new assay is that it can be applied to all kinds of other proteins that interact with microtubules, says Peter Bieling, who carried out the research in Surreys lab. It is a powerful approach that will advance our understanding of the large variety of different microtubule end tracking proteins and can shed light on their mechanics and functions.


'/>"/>

Contact: Anna-Lynn Wegener
wegener@embl.de
49-622-138-7452
European Molecular Biology Laboratory  
Source:Eurekalert

Related biology news :

1. ESF EURYI award winner aims to stop cancer cells reading their own DNA
2. Newly created cancer stem cells could aid breast cancer research
3. AIDS interferes with stem cells in the brain
4. Clemson scientists shed light on molecules in living cells
5. Social habits of cells may hold key to fighting diseases
6. UF scientists reveal how dietary restriction cleans cells
7. Human derived stem cells can repair rat hearts damaged by heart attack
8. Scientists identify embryonic stem cells by appearance alone
9. Cells united against cancer
10. Pittsburgh scientists identify human source of stem cells with potential to repair muscle
11. U of M begins nations first clinical trial using T-reg cells from cord blood in leukemia treatment
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How cells keep in shape
(Date:2/28/2017)... DORTMUND, Germany , February 28, 2017 ... ... Amsterdam from 14 to 16 March, ... to destination, and show how seamless travel is a real benefit ... Materna has added biometrics to their passenger touch point solutions to ...
(Date:2/22/2017)... -- With the biometrics market to exceed $10 ... that innovative and agile startups must incorporate into ... changing competitive landscape: multifactor authentication (MFA), point-of-sale (PoS), ... "Companies can no longer afford to cut corners ... Pavlakis , Industry Analyst at ABI Research. "Pairing ...
(Date:2/13/2017)... SAN FRANCISCO , Feb. 13, 2017 /PRNewswire/ ... a centralized platform that is designed to enhance ... the latest release in the RSA Fraud & ... to enable organizations to leverage additional insights from ... anti-fraud tools to better protect their customers from ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... ... March 23, 2017 , ... Advanced Polymer Monitoring Technologies (APMT), ... Sigmund “Sig” Floyd as Vice President ? Global Business Development. Dr. Floyd will ... “Dr. Floyd’s career has spanned 30 years in the chemicals and equipment industries. ...
(Date:3/22/2017)... 22, 2017  UBM and the Massachusetts Medical ... extended partnership and the third annual Massachusetts Medtech Week. ... 21 st Annual MassMEDIC Conference held in ... 3-4, 2017. MassMEDIC will feature ... President and CEO, Scott Whitaker , at ...
(Date:3/22/2017)... New York , March 22, 2017 ... is largely fragmented, states a research report by Transparency ... S.A., Pfizer Inc., Amgen Inc., and AbbVie Inc., accounted ... in 2015. The prominent players in this market are ... expand their product portfolio, which is likely to lead ...
(Date:3/22/2017)... , March 22, 2017   ... independent provider of product and service solutions ... that it has acquired EPL Archives, Inc., ... customers across the entire regulated product research, ... sample, document storage and ancillary services. EPL ...
Breaking Biology Technology: