Navigation Links
How cells in the nose detect odors
Date:11/14/2012

RIVERSIDE, Calif. The human nose has millions of olfactory neurons grouped into hundreds of different neuron types. Each of these neuron types expresses only one odorant receptor, and all neurons expressing the same odorant receptor plug into one region in the brain, an organization that allows for specific odors to be sensed.

For example, when you smell a rose, only those neurons that express a specific odor receptor that detects a chemical the rose emits get activated, which in turn activates a specific region in the brain. Rotten eggs on the other hand, activate a different class of neurons that express a different (rotten egg) receptor and activate a different part of the brain. How the one-receptor-per-neuron pattern critical for odor discrimination is achieved in olfactory neurons is a mystery that has frustrated scientists for long.

Now a team of scientists, led by neurobiologists at the University of California, Riverside, has an explanation. Focusing on the olfactory receptor for detecting carbon dioxide in Drosophila (fruit fly), the researchers identified a large multi-protein complex in olfactory neurons, called MMB/dREAM, that plays a major role in selecting the carbon dioxide receptors to be expressed in appropriate neurons.

Study results appear in the Nov. 15 issue of Genes & Development. The research is featured on the cover of the issue.

Braking mechanism

According to the researchers, a molecular mechanism first blocks the expression of most olfactory receptor genes (~60) in the fly's antennae. This mechanism, which acts like a brake, relies on repressive histones proteins that tightly wrap DNA around them. All insects and mammals are equipped with this mechanism, which keeps the large families of olfactory receptor genes repressed.

"How, then, do you release this brake so that only the carbon dioxide receptor is expressed in the carbon dioxide neuron while the remaining receptors are repressed?" said Anandasankar Ray, an assistant professor of entomology, whose lab conducted the research. "Our lab, in collaboration with a lab at Stanford University, has found that the MMB/dREAM multi-protein complex can act on the genes of the carbon dioxide receptors and de-repress the braking mechanism akin to taking the foot off the brake pedal. This allows these neurons to express the receptors and respond to carbon dioxide."

Ray explained that one way to understand the mechanism in operation is to consider a typewriter. When none of the keys are pressed, a spring mechanism or "brake" can be imagined to hold the type bars away from the paper. When a key is pressed, however, the brake on that key is overcome and the appropriate letter is typed onto the paper. And just as typing only one letter in one spot is important for each letter to be recognized, expressing one receptor in one neuron lets different sensor types to be generated in the nose.

"If this were not the case, a single cell would express several receptors and there would be no diversity in sensor types," Ray said. "Our study then attempts to answer a fundamental question in neurobiology: How do we generate so much cellular diversity in the nervous system?"

Next, the researchers will test whether the receptor-braking mechanism they identified in Drosophila is also involved in other organisms like mosquitoes. They also will examine the other receptors in Drosophila to explain what de-represses each one of them.

Modulating response levels

The researchers also found that the activity of the MMB/dREAM multi-protein complex in Drosophila can alter levels of the carbon dioxide receptor and modulate the level of response to carbon dioxide.

"If you dial down the activity of the complex, you also dial down the expression of the carbon dioxide receptors, and the flies cannot sense carbon dioxide effectively," Ray said. "What's particularly encouraging is that this complex is highly conserved in mosquitoes as well, which means that we may be able to dial down the activity of this complex in mosquitoes using genetic strategies, and potentially lower the ability of mosquitoes to sense carbon dioxide, used by them to find human hosts. Because carbon dioxide receptors are so well conserved in mosquitoes, we expect that the regulatory mechanism we discovered in Drosophila may also be acting on mosquito carbon dioxide receptors."

Antenna versus maxillary palp

Interestingly, flies sense carbon dioxide with receptors located in their antennae, and avoid the source. Mosquitoes, on the other hand, are attracted to carbon dioxide and use receptors located not on their antenna but another organ called the maxillary palps (small structures present near the mouthparts). The research team found that two specific proteins in the multi-protein MMB/dREAM complex in mosquitoes have sequences that are quite different from those of the corresponding proteins in Drosophila.

"These proteins E2F2 and Mip120 could explain why Drosophila expresses carbon dioxide receptors in the antennae while the mosquito expresses them in its maxillary palp," Ray said.


'/>"/>

Contact: Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050
University of California - Riverside
Source:Eurekalert  

Related biology news :

1. Tortoise and the hare: New drug stops rushing cancer cells, slow and steady healthy cells unharmed
2. Stem cells can repair a damaged cornea
3. Scientists produce eye structures from human blood-derived stem cells
4. Study demonstrates cells can acquire new functions through transcriptional regulatory network
5. Epigenetic signatures direct the repair potential of reprogrammed cells
6. Researchers print live cells with a standard inkjet printer
7. Nanopills release drugs directly from the inside of cells
8. Protein jailbreak helps breast cancer cells live
9. Newly found protein helps cells build tissues
10. BU researchers derive purified lung and thyroid progenitors from embryonic stem cells
11. Housekeeping mechanism for brain stem cells discovered
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
How cells in the nose detect odors
(Date:6/9/2016)... leader in attendance control systems is proud to announce the introduction of fingerprint attendance ... the right employees are actually signing in, and to even control the opening of ... ... ... Photo - ...
(Date:6/2/2016)... , June 2, 2016 The ... has awarded the 44 million US Dollar project, for ... Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... leader in the production and implementation of Identity Management Solutions. ... January, however Decatur was selected for ...
(Date:5/24/2016)... facilitates superior patient care by providing unparalleled technology to leaders of the medical imaging ... product recently added to the range of products distributed by Ampronix. Photo ... ... ... News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... -- A person commits a crime, and the detective uses ... criminal down. An outbreak of foodborne illness makes ... uses DNA evidence to track down the bacteria that caused ... not. The FDA has increasingly used a complex, cutting-edge technology ... Put as simply as possible, whole genome sequencing is a ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... today announced the launch of the Supplyframe Design Lab . Located in ... to explore the future of how hardware projects are designed, built and brought ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
Breaking Biology Technology: