Navigation Links
How bumblebees find efficient routes without a GPS
Date:9/20/2012

Scientists from Queen Mary, University of London have tracked bumblebees for the first time to see how they select the optimal route to collect nectar from multiple flowers and return to their nest.

In a paper published in PLOS Biology today (18 September), the scientists, working with the Harmonic Radar Group at Rothamsted Research, were able to use radar tracking to show how bumblebees discover flowers, learn their location and use trial and error to find the most efficient route between flowers over large distances.

Professor Lars Chittka and Dr Mathieu Lihoreau from Queen Mary's School of Biological and Chemical Sciences and colleagues set up five artificial flowers in a 1km diameter field. Each flower was fitted with motion-triggered webcams and had landing platforms with drops of sucrose in the middle*.

"Using mathematical models, we dissected bees' learning process and identified how they may decipher this optimal solution without a map. Initially, their routes were long and complex, revisiting empty flowers several times," Dr Lihoreau explained.

"But, as they gained experienced, the bees gradually refined their routes through trial and error. Each time a bee tried a new route it increased its probability of re-using the new route if it was shorter than the shortest route it had tried before. Otherwise the new route was abandoned and another was tested.

"After an average of 26 times each bee went foraging, which meant they tried about 20 of the 120 possible routes, they were able to select the most efficient path to visit the flowers, without computing all the possibilities."

Professor Chittka and colleagues have previously shown that bees were able to learn the shortest route possible to navigate between flowers in the lab but this is the first time they have been able to observe this behaviour in natural conditions and to describe how bees may optimise their routes.

"The speed at which they learn through trial and error is quite extraordinary for bumblebees as this complex behaviour was thought to be one which only larger-brained animals were capable of," Professor Chittka said.

"Interestingly, we also found that if we removed a flower, bees continued looking at that location even if it was empty for an extended period of time. It seems bees don't easily forget a fruitful flower."

The scientists used motion-triggered web cams and tiny bumblebee-mounted radar transponders to track the bumblebees. The recordings on the flowers showed that bees exhibited considerable individuality each one had a favoured arrival and departure direction, different from the other bees.

Head of Computational and Systems Biology at Rothamsted Research, Professor Chris Rawlings, added: "This is an exciting result because it shows that seemingly complex behaviours can be described by relatively simple rules which can be described mathematically.

"This means we can now use mathematics to inform us when bee behaviour might be affected by their environment and to assess, for example, the impact of changes in the landscape."


'/>"/>
Contact: Bridget Dempsey
b.dempsey@qmul.ac.uk
44-020-788-23004
Queen Mary, University of London
Source:Eurekalert

Related biology news :

1. Computer model pinpoints prime materials for efficient carbon capture
2. Surviving without ice
3. Survival without water: A key trait of an aquatic invader to spread
4. NPointer from Neurotechnology Uses Hand Gestures to Control and Navigate Computer Programs Without a Mouse or Touchpad
5. Production of chemicals without petroleum
6. Plant growth without light control
7. Feeding without the frenzy
8. How to make high-end perfumes without whale barf
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2016)... ALBANY, New York , January 13, 2016 /PRNewswire/ ... Transparency Market Research has published a new market report ... Share, Growth, Trends, and Forecast, 2015 - 2023. According to ... mn in 2014 and is anticipated to reach US$1,625.8 ... from 2015 to 2023. In terms of volume, the ...
(Date:1/11/2016)... , Jan. 11, 2016 Synaptics Incorporated (NASDAQ: ... solutions, today announced that its ClearPad ® TouchView ... products won two separate categories in the 8 th ... and Best Technology Breakthrough. The Synaptics ® TDDI ... simplified supply chain, thinner devices, brighter displays and borderless ...
(Date:1/8/2016)... MANCHESTER, United Kingdom , Jan. 8, 2016 /PRNewswire/ ... sensor-based diagnostic products, today announced the closing of a $9 ... investors.  Proceeds from the financing will be used to accelerate ... device for detecting early-stage pressure ulcers. ... after receiving CE Mark approval. The device,s introduction has been ...
Breaking Biology News(10 mins):
(Date:2/5/2016)... , Feb. 5, 2016 Australian-US drug discovery and ... today the appointment of a new Chairman, Mr John ... , effective immediately. James Garner , has ... Director and former Acting CEO, Mr Iain Ross , ... Director. --> James Garner , has also been ...
(Date:2/4/2016)... , ... February 04, 2016 , ... ... GC-MS and triple quad LC-MS, host live demos and poster sessions, and present ... and exhibition. The conference takes place March 6 to 10 at the Georgia ...
(Date:2/4/2016)... VANCOUVER, British Columbia and MENLO PARK, ... Inc. (OTCQX: DMPI) ("DelMar" and the "Company"), a biopharmaceutical ... therapies, today announced that it will present at the ... on Monday, February 8, 2016 at 10:00 a.m. EST in ... Jeffrey Bacha , DelMar,s president and CEO, will provide an ...
(Date:2/4/2016)... 4, 2016 Sinovac Biotech Ltd. ("Sinovac" or ... of biopharmaceutical products in China , ... of directors received on February 4, 2016 a preliminary ... consortium comprised of PKU V-Ming ( Shanghai ... CICC Qianhai Development ( Shenzhen ) Fund ...
Breaking Biology Technology: