Navigation Links
How bacteria integrate autotransporters into their outer membrane
Date:9/23/2013

The bacterial outer envelope is densely packed with proteins that form small pores and facilitate the passage of nutrients, toxins and signaling molecules. Professors Timm Maier and Sebastian Hiller from the Biozentrum of the University of Basel now demonstrate how these transporter proteins are integrated into the outer membrane. Using x-ray structural analysis they reveal the structure-function relationship of the protein TamA, which plays an important role in the assembly of transport proteins in the bacterial outer membrane. Their findings have been published recently in the renowned scientific journal Nature Structural and Molecular Biology.

Shuttling proteins from inside the cell to the outside environment is a complex task for Gram-negative bacteria, which are not only surrounded by an inner membrane, but also by an outer membrane barrier for protection against adverse environmental conditions. The bacteria however, can overcome this additional barrier by inserting special transport proteins into the protective outer membrane. In a joint project, Maier and Hiller, both Professors of Structural Biology at the Biozentrum of the University of Basel, provide mechanistic insights into this key process.

The structure of the assembly protein TamA explains its function

An important option for channeling protein domains across the outer membrane are so-called autotransporters. These membrane proteins form a barrel-like structure with a central pore, but they cannot autonomously transport their "passenger domain" across the outer membrane. Specific assembly proteins are required for the folding and integration of autotransporters into the outer membrane. Employing x-ray crystallography, the authors of the study decoded the atomic structure of the autotransporter assembly protein TamA of the intestinal bacterium Escherichia Coli.

"The protein TamA", explains Fabian Gruss, first author and recipient of a Werner-Siemens PhD fellowship, "also forms a barrel with a pore. The pore is closed to the outside by a lid but a particular kink in the barrel wall provides a gate for autotransporter substrates." When an unfolded autotransporter is delivered, TamA hooks onto one end of the substrate polypeptide chain and integrates it step by step via the gate into its own barrel structure. The TamA barrel is thus expanded; the pore widens and opens such that passenger substrates traverse to the exterior. The assembly process ends when TamA releases the autotransporter into the surrounding membrane. "The autotransporter insertion mechanism was previously completely enigmatic for the first time, knowing the structure of TamA, we can now picture how assembly and translocation could function."

Assembly process important for infections

Many pathogens, such as the diarrhea causing Yersinia, Salmonella or the Cholera pathogen, belong to the group of Gram-negative bacteria. With the help of the autotransporter, they release toxins or adhesive proteins to infect their host cells. In their study, Maier and Hiller provide completely new findings about membrane insertion of autotransporters as well as the translocation of their cargo.


'/>"/>

Contact: Olivia Poisson
olivia.poisson@unibas.ch
University of Basel
Source:Eurekalert

Related biology news :

1. Leading evolutionary scientist to discuss how genome of bacteria has evolved
2. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
3. Team discovers how bacteria resist a Trojan horse antibiotic
4. From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
5. Bacterial shock to recapture essential phosphate
6. Disarming disease-causing bacteria
7. Study shows unified process of evolution in bacteria and sexual eukaryotes
8. Invisible helpers: How probiotic bacteria protect against inflammatory bowel diseases
9. Researchers develop rapid test strips for bacterial contamination in swimming water
10. Bacteria discovery could lead to antibiotics alternatives
11. Agricultural bacteria: Blowing in the wind
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... PUNE, India , March 28, 2017 ... (Analog, IP, Biometrics), Hardware (Camera, Monitors, Servers, Storage Devices), ... Maintenance), Vertical, and Region - Global Forecast to 2022", ... 30.37 Billion in 2016 and is projected to reach ... 15.4% between 2017 and 2022. The base year considered ...
(Date:3/24/2017)... , March 24, 2017 The Controller General of ... Mr. Abdulla Algeen have received the prestigious international IAIR Award ... Continue Reading ... ... and Deputy Controller Abdulla Algeen (small picture on the right) have received ...
(Date:3/23/2017)... 2017 The report "Gesture Recognition and Touchless Sensing Market ... - Global Forecast to 2022", published by MarketsandMarkets, the market is expected to ... between 2017 and 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... , Aug. 16, 2017  This year,s edition of the Inc. ... in life sciences workforce solutions, has made the list for the third ... recognizes the nation,s fastest-growing private companies based on a set of quantitative ... which includes the fastest-growing companies in the Bay State ... Inc. 5000 ...
(Date:8/15/2017)... NC (PRWEB) , ... August 15, 2017 , ... ... 2017, celebrating 10 years of successes helping medical technology companies and inventors develop and ... to a renowned full-service national engineering firm with a portfolio of clients in the ...
(Date:8/15/2017)... , ... August 15, 2017 , ... Any expert in ... has compromised these disciplines for more than half a century. Despite their essential ... It is widely known that molecular tags developed for this purpose also tag ...
(Date:8/15/2017)... (PRWEB) , ... August 15, 2017 , ... ... and is threatened by various biotic and abiotic factors. During this educational webinar, ... history of coffee, as well as gain a better understanding of how genomics ...
Breaking Biology Technology: