Navigation Links
Hopkins scientists turn on fountain of youth in yeast
Date:11/23/2011

Collaborations between Johns Hopkins and National Taiwan University researchers have successfully manipulated the life span of common, single-celled yeast organisms by figuring out how to remove and restore protein functions related to yeast aging.

A chemical variation of a "fuel-gauge" enzyme that senses energy in yeast acts like a life span clock: It is present in young organisms and progressively diminished as yeast cells age.

In a report in the September 16 edition of Cell, the scientists describe their identification of a new level of regulation of this age-related protein variant, showing that when they remove it, the organism's life span is cut short and when they restore it, life span is dramatically extended.

In the case of yeast, the discovery reveals molecular components of an aging pathway that appears related to one that regulates longevity and lifespan in humans, according to Jef Boeke, Ph.D., professor of molecular biology, genetics and oncology, and director of the HiT Center and Technology Center for Networks and Pathways, Johns Hopkins University School of Medicine.

"This control of longevity is independent of the type described previously in yeast which had to do with calorie restriction," Boeke says. "We believe that for the first time, we have a biochemical route to youth and aging that has nothing to do with diet." The chemical variation, known as acetylation because it adds an acetyl group to an existing molecule, is a kind of "decoration" that goes on and off a protein in this case, the protein Sip2 much like an ornament can be put on and taken off a Christmas tree, Boeke says. Acetylation can profoundly change protein function in order to help an organism or system adapt quickly to its environment. Until now, acetylation had not been directly implicated in the aging pathway, so this is an all-new role and potential target for prevention or treatment strategies, the researchers say.

The team showed that acetylation of the protein Sip2 affected longevity defined in terms of how many times a yeast cell can divide, or "replicative life span." The normal replicative lifespan in natural yeast is 25. In the yeast genetically modified by researchers to restore the chemical modification, life span extended to 38, an increase of about 50 percent.

The researchers were able to manipulate the yeast life span by mutating certain chemical residues to mimic the acetylated and deacetylated forms of the protein Sip2. They worked with live yeast in a dish, measuring and comparing the life spans of natural and genetically altered types by removing buds from the yeast every 90 minutes. The average lifespan in normal yeast is about 25 generations, which meant the researchers removed 25 newly budded cells from the mother yeast cell. As yeast cells age, each new generation takes longer to develop, so each round of the experiment lasted two to four weeks.

"We performed anti-aging therapy on yeast," says the study's first author, Jin-Ying Lu, M.D., Ph.D., of National Taiwan University. "When we give back this protein acetylation, we rescued the life span shortening in old cells. Our next task is to prove that this phenomenon also happens in mammalian cells."


'/>"/>

Contact: Audrey Huang
audrey@jhmi.edu
410-614-5105
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Johns Hopkins researchers detect sweet cacophony while listening to cellular cross-talk
2. Johns Hopkins scientists pull proteins tail to curtail cancer
3. Hopkins scientists ID 10 genes associated with a risk factor for sudden cardiac death
4. Pancreatic Cancer Action Network-AACR Pathway to Leadership Grant awarded to Johns Hopkins Early Career investigator
5. Johns Hopkins scientists discover a controller of brain circuitry
6. Hopkins researchers put proteins right where they want them
7. 2 Hopkins scientists awarded European honorary doctorates
8. Hopkins team discovers sweet way to detect prediabetes
9. Johns Hopkins researchers reshape basic understanding of cell division
10. Johns Hopkins researchers capture jumping genes
11. Hopkins researchers use light to move molecules
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... 2016  AIC announces that it has just released a new white paper authored ... scale-out plus high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system ...
(Date:11/15/2016)... , Nov 15, 2016 Research and Markets ... Forecast to 2021" report to their offering. ... ... 16.18 Billion by 2021 from USD 6.21 Billion in 2016, growing ... Growth of the bioinformatics market is driven by the growing ...
(Date:6/27/2016)... , June 27, 2016 Research and ... North America 2016-2020" report to their offering. ... North America to grow at a CAGR of ... been prepared based on an in-depth market analysis with inputs from ... prospects over the coming years. The report also includes a discussion ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... ... 09, 2016 , ... Aditya Humad, Acting CFO of AxioMed and Managing Partner ... United States, Axiomed is now gaining interest from Silicon Valley. “It was satisfying to ... went on to say that, “We expect interest to continue to rise as AxioMed ...
(Date:12/9/2016)...  A platform of orthopedic device technologies developed by ... closer to becoming viable options for repairing broken ... start-up company from Philadelphia, PA. ... novel absorbable bone fixation and regenerative repair technologies ... The company has leased space within the University ...
(Date:12/9/2016)... - Portage Biotech Inc. ("Portage" or "the Company") (OTC: ... that Biohaven has issued today the following press release: ... (PRWEB) Dec 9, 2016 - Biohaven Pharmaceutical Holding Company ... U.S. Food and Drug Administration ("FDA") has granted the ... BHV-0223, an orally dissolving tablet being developed for the ...
(Date:12/8/2016)... Board of Directors of the Pittsburgh Life Sciences ... only pure life sciences investment firm, today announced a ... developed by the Nominating and Governance Committee over the ... Jordan is selected to serve as President and ... who is elected to the position of Executive Chairman ...
Breaking Biology Technology: