Navigation Links
Hitting target in cancer fight now easier with new nanoparticle platform, UCLA scientists say

The ability to use nanoparticles to deliver payloads of cancer-fighting drugs to tumors in the body could herald a fundamental change in chemotherapy treatment. But scientists are still at a relatively early stage in the implementation of this technology.

Although developing nanoparticles that work as "magic bullets" selectively targeting tumors while sparing normal, healthy tissues is still the goal, the reality is that most of these nanocarriers are removed through the liver and spleen before ever reaching their intended target. And many of the encapsulated drugs can be lost while the carriers circulate in the blood or degraded on the way to tumors.

In a study recently published in the journal ACS Nano, UCLA scientists report that by using engineered mesoporous silica nanoparticles (MSNPs) as delivery vehicles, they were able to achieve significant increases in the percentage of drug-carrying nanoparticles that reach and are retained at tumor sites.

The MSNP platform allows for the introduction of multiple and customized design features that can help optimize the delivery of chemotherapeutic drugs to a variety of cancer types, said the researchers, led by Dr. Andre Nel, a professor of medicine, pediatrics and public health and chief of the nanomedicine division in the UCLA Department of Medicine, and Jeffrey Zink, a professor in the UCLA Department of Chemistry and Biochemistry. Nel and Zink are also members of the California NanoSystems Institute at UCLA.

A key challenge in enhancing drug delivery has been improving nanocarriers' access to tumors by capitalizing on features like the leakiness of abnormal tumor blood vessels, which allows nanoparticles to slip through and be retained at tumor sites. To achieve that, particles must be designed to be the ideal size, to remain in the blood stream long enough by temporarily evading the liver and spleen, and to stably bind the drug.

The dynamic design features employed by the UCLA research team include the manipulation of the size and surface properties of the nanoparticle to improve tumor biodistribution and protected delivery. The study demonstrates how, through an iterative design process, the first-generation MSNP was redesigned and optimized to deliver doxorubicin to a cancer xenograft in a mouse model.

The team demonstrated a significant increase in particle retention at the tumor site: Approximately 10 to 12 percent of all the drug-loaded particles injected intravenously reached the tumor site. This high tumor distribution is exceptionally good, compared with other polymer- and copolymer-based nanodelivery platforms for which the best passive tumor targeting is in the range of 3.5 to 10 percent of injected particles, the researchers said.

The study also demonstrated efficient drug delivery and tumor cellkilling using the redesigned and optimized MSNP system in mice.

"The amount of doxorubicin being delivered to the tumor site was considerably higher than what could be achieved by the free drug, in addition to allowing efficient delivery into the cancer cells at the tumor site," said Nel, who is also a member of UCLA's Jonsson Comprehensive Cancer Center.

Moreover, the improved drug delivery was accompanied by a significant reduction in systemic side effects such as weight loss and reduced liver and renal injury.

"This is an important demonstration of how the optimal design of the MSNP platform can achieve better drug delivery in vivo," Nel said. "This delivery platform allows effective and protective packaging of hydrophobic and charged anticancer drugs for controlled and on-demand delivery. Not only are these design features superior to induce tumor shrinkage and apoptosis compared to the free drug, but they also dramatically improve the safety profile of systemic doxorubicin delivery."


Contact: Jennifer Marcus
University of California - Los Angeles

Related biology news :

1. Study shows hunger hitting closer to home
2. Chances of hurricane hitting Texas discussed at UH conference
3. How your body clock avoids hitting the snooze button
4. Why the swamp sparrow is hitting the high notes
5. MIT: Removable cloak for nanoparticles helps them target tumors
6. System in brain -- target of class of diabetes drugs -- linked to weight gain
7. La Jolla Institute identifies new therapeutic target for asthma, COPD and other lung disorders
8. Lesser-known Escherichia coli types targeted in food safety research
9. Target for lung cancer chemoprevention identified
10. Short rotation energy crops could help meet UKs renewable energy targets
11. Study identifies promising target for AIDS vaccine
Post Your Comments:
(Date:10/27/2015)... BERLIN, Germany , October 27, 2015 ... 2015. SMI,s Automated Semantic Gaze Mapping technology (ASGM) automatically ... SMI,s Eye Tracking Glasses , so that ... Suite BeGaze. --> Munich, Germany ... technology (ASGM) automatically maps data from mobile eye tracking ...
(Date:10/26/2015)... LAS VEGAS , Oct. 26, 2015 /PRNewswire/ ... innovator in modern authentication and a founding member of ... of its latest version of the Nok Nok™ S3 ... use standards-based authentication that supports existing and emerging methods ... is ideal for organizations deploying customer-facing applications that require ...
(Date:10/23/2015)... and GOLETA, California , October 23, ... BIOPAC and SensoMotoric Instruments (SMI) announce a mobile plug ... data captured during interactive real-world tasks SensoMotoric ... integration of their established wearable solutions for eye tracking ... gaze behavior captured with SMI Eye Tracking Glasses ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... and the Organization of Black Aerospace Professionals (OPBAP) has been formalized with the ... other AMA team leaders met with OPBAP leaders Capt. Karl Minter and Capt. ...
(Date:11/25/2015)... ... November 25, 2015 , ... ... featured on AngelList early in their initial angel funding process. Now, they are ... individuals looking to make early stage investments in the microbiome space. In ...
(Date:11/24/2015)... 2015 Cepheid (NASDAQ: CPHD ) today ... following conference, and invited investors to participate via webcast. ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ... New York, NY      Tuesday, December 1, 2015 ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is ... it is bound to proteins, copper is also toxic to cells. With a ... Polytechnic Institute (WPI) will conduct a systematic study of copper in the bacteria ...
Breaking Biology Technology: