Navigation Links
High-resolution 3-D imaging draws new picture of Golgi's whereabouts during cell division

Resolving a fundamental question in cell biology and showing off the powers of new high-resolution 3-D imaging, NIH scientists have discovered where the Golgi apparatus, which sorts newly synthesized proteins for transport inside and outside the cell, goes when it disassembles during cell division, according to research to be presented on Sunday, Dec. 15, at the American Association for Cell Biology (ASCB) annual meeting in New Orleans.

With conventional microscopy techniques, the scientists said they could only watch as the Golgi dissolved into tiny "puncta" and an unresolvable haze. But powerful new imaging techniques allowed the researchers to follow the Golgi through its "choreographed disassembly process," which now appears tightly linked to the endoplasmic reticulum (ER) during cell division, said Dylan Burnette, Ph.D., and Prabuddha Sengupta, Ph.D., and Jennifer Lippincott-Schwartz, Ph.D., of the Eunice Shriver National Institute of Child Health and Human Development (NICHD) in Bethesda, MD.

Cell division by mitosis is the complicated yet critical process by which a mother cell divides into two daughter cells. But first, the mother cell has to pack up her cellular household contents, disassembling and dividing up everything for her soon-to-be-formed daughters.

How cells manage division has been exhaustively studied for over a century and yet basic mysteries remained. Scientists knew that some organelles such as the ER are pulled apart before division but keep their tubular membrane structure intact. Other organelles such as the Golgi, go to pieces after the prophase of mitosis through choreographed disassembly.

But where does the Golgi go once it is in pieces? To answer the question, the NIH researchers started with two plausible theories: In the endoplasmic reticulum (ER)-linked hypothesis, the Golgi puncta and enzyme haze are closely held by the ER; in the non-ER-linked model, the puncta and haze float about on their own, waiting for cytokinesis when the two daughter cells separate and the Golgi body reappears as stacks of membrane-bound cisternae, ready to sort proteins from the reassembled ER.

Powered by their new imaging technologies, which gave them far greater resolution than previously possible, the researchers saw clear support of the ER-linked model -- the enzyme haze sticking close to ER markers with the puncta clustering near ER exits.

For a second line of proof, the NICHD researchers followed up with a pharmacological-based trapping assay that showed Golgi enzymes being held tightly by the ER during mitosis. The results indicate that Golgi enzymes redistribute into the ER during mitosis, and that they must follow an ER export pathway to reform the Golgi at the end of mitosis.

This study not only resolves a basic cellular question but shows what new solutions await as these new technologies give us keener vision and sharper tools.


Contact: Cathy Yarbrough

John Fleischman

American Society for Cell Biology

Related biology news :

1. A high-resolution endoscope as thin as a human hair
2. Citizen scientists to document biodiversity with high-resolution imagery during summer solstice
3. High-resolution atomic imaging of specimens in liquid by TEM using graphene liquid cell
4. High-tech X-ray imaging technique to offer detailed look at engineered tissue
5. Radiographic imaging exposes relationship between obesity and cancer
6. Visualizing the past: Nondestructive imaging of ancient fossils
7. Kessler Foundation neuroimaging study sheds light on mechanisms of cognitive fatigue in MS
8. Cancer imaging centers get £35 million boost
9. Organic electronics: Imaging defects in solar cells
10. Molecular Imaging Agents: Targets, Technology, Markets, and Commercial Opportunities
11. Texas A&M research contributes to improved ultrasound imaging
Post Your Comments:
(Date:11/2/2015)... MENLO PARK, Calif. , Nov. 2, 2015 /PRNewswire/ ... to $9 million to provide preclinical development services to ... Under the contract, SRI will provide scientific expertise, modern ... a wide variety of preclinical pharmacology and toxicology studies ... --> --> The PREVENT Cancer Drug ...
(Date:10/29/2015)... 2015  Connected health pioneer, Joseph C. Kvedar ... technology-enabled health and wellness, and the business opportunities that ... The Internet of Healthy Things . Long before ... existed, Dr. Kvedar, vice president, Connected Health, Partners HealthCare, ... moving care from the hospital or doctor,s office into ...
(Date:10/27/2015)... SAN JOSE, Calif. , Oct. 27, 2015 /PRNewswire/ ... human interface solutions, today announced that Google has adopted ... family of touch controller solutions to power its newest ... Nexus 6P by Huawei. --> ... ecosystem partners like Google to provide strategic collaboration in ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... (PRWEB) , ... November 25, 2015 , ... ... company uBiome, were featured on AngelList early in their initial angel funding process. ... AngelList syndicate for individuals looking to make early stage investments in the microbiome ...
(Date:11/24/2015)... VANCOUVER , Nov. 24, 2015 /CNW/ - iCo ... ICOTF), today reported financial results for the quarter ... are expressed in Canadian dollars and presented under ... the United States ," said Andrew ... "These advancements regarding iCo-008 are not only value ...
(Date:11/24/2015)... 24, 2015 --> ... report "Oligonucleotide Synthesis Market by Product & Services (Primer, ... Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic ... the market is expected to reach USD 1,918.6 Million ... a CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... -- Tikcro Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General Meeting ... Israel time, at the law offices of ... th Floor, Tel Aviv, Israel . ... Izhak Tamir to the Board of Directors; , election of ... approval of an amendment to certain terms of options granted to our ...
Breaking Biology Technology: