Navigation Links
High-efficiency water treatment using light using a novel UV-light system
Date:5/7/2014

This news release is available in German.

There are numerous things in our waste water that should not find their way into the environment yet waste water treatment plants only remove a portion of these contaminants. In particular, bacteria commonly employed in the biological treatment stage have no effect on persistent substances, which include highly stable hydrocarbon compounds. The result: cleaning agent residuals and pesticides as well as pharmacological substances are reaching environmental waters. The loading from these kinds of harmful substances in the North Sea, for instance, is already clearly measurable today.

Researchers of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart together with international industrial partners have now developed a new chemical reaction system that breaks down these kinds of resilient and harmful molecules thoroughly and efficiently without having to add chemicals like hydrogen peroxide, for instance. Instead, the researchers are essentially utilizing the "self-healing" power of water aided by photolysis (a.k.a. photochemical dissociation). The principle of photolysis is based on splitting water molecules using photons. The shorter the wavelength of light, the higher the photons' energy. Researchers therefore use light sources in this system that emit UV light exclusively in the region of 172 nanometers i.e. extremely energetic photons. As soon as these photons enter water, they split the H2O molecules, forming highly reactive hydroxyl radials as a result. "These hydroxyl compounds have an even higher reaction potential than atomic oxygen, for example. They are therefore able to decompose even very stable hydrocarbon compounds contained in harmful residues," explains Siegfried Egner, head of the Physical Process Technology department at IGB.

Controlling the movement of the water

There is a catch, however: this process takes place only in the immediate vicinity of the UV emitter a rectangular, flat glass element that is positioned in the reactor vessel. When power is applied to the element, the hydroxyl radicals form a thin reactive boundary layer only about 50 micrometers deep surrounding the external surface of the glass. In order to be sure no harmful particles escape untreated, the water must be controllably and verifiably directed through this boundary layer a genuinely tricky task. On the one hand, you have to make sure the entire contents of the reactor vessel is treated. On the other, the researchers would like to be as certain as possible that every single hydroxyl radical formed is also used for a chemical reaction. This is because the extremely reactive hydroxyl radicals are extremely short-lived. If no "fresh" molecules are found to react with during this time interval, the energy of the hydroxyl radicals goes unused. The experts in Stuttgart have been successful in controlling the movement of the water so exactly that all of the reactor vessel contents are reliably and highly efficiently treated.

The first industrial prototype, which has a through-put of 2.5 cubic meters per hour, will be shown by the researchers and their industry partners at the trade fair. "A certain amount of variation is normal, since the processing speed depends of course on the degree of contamination as well," explains Egner. To be sure the water is actually discharged only if its quality is impeccable, the unit is equipped with an additional safety mechanism. A sensor system is located right at the discharge port that monitors the water for harmful substances. The water is discharged only once impurities falls below a maximum permitted value. The entire unit is fully automatic and programmable for instance, it can be switched on and off depending on the electrical power rates on offer.


'/>"/>

Contact: Dipl.-Ing. Siegfried Egner
siegfried.egner@igb.fraunhofer.de
49-711-970-3643
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Ozone treated water v. lethal microbial material
2. Unexpected crustacean diversity discovered in northern freshwater ecosystems
3. New methods for better purification of wastewater
4. Costs for changing pollution criteria in Florida waters likely to exceed EPA estimates
5. Current water resources in Europe and Africa
6. UC research: Tracking Lake Erie water snake in fight against invasive fish
7. Study confirms oil from Deepwater Horizon disaster entered food chain in the Gulf of Mexico
8. Specialization for underwater hearing by the tympanic middle ear of the turtle
9. Study by Haverford College professor reveals unprecedented impact of Deepwater Horizon on deep ocean
10. Increasing water scarcity in Californias Bay-Delta will necessitate trade-offs; hard decisions needed to balance various environmental risks
11. Scientists study the catalytic reactions used by plants to split oxygen from water
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
High-efficiency water treatment using light using a novel UV-light system
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/9/2016)... Finland , June 9, 2016 ... National Police deploy Teleste,s video security solution to ensure the ... France during the major tournament ... data communications systems and services, announced today that its video ... Prefecture to back up public safety across the ...
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
(Date:6/23/2016)... June, 23, 2016  The Biodesign Challenge (BDC), a ... ways to harness living systems and biotechnology, announced its ... in New York City . ... students, showcased projects at MoMA,s Celeste Bartos Theater during ... , MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... announced the launch of the Supplyframe Design Lab . Located in Pasadena, ... explore the future of how hardware projects are designed, built and brought to ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case ... Denmark detail how a patient who developed lymphedema after being treated for breast cancer ... could change the paradigm for dealing with this debilitating, frequent side effect of cancer ...
Breaking Biology Technology: