Navigation Links
Hidden layer of genome unveils how plants may adapt to environments throughout the world
Date:3/6/2013

LA JOLLA, CA Scientists at the Salk Institute for Biological Studies have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases.

Published March 6 in Nature, the findings show that in addition to genetic diversity found in plants throughout the world, their epigenomic makeup is as varied as the environments in which they are found. Epigenomics is the study of the pattern of chemical markers that serve as a regulatory layer on top of the DNA sequence. Depending on where they grow, the plants' epigenomic differences may allow them to rapidly adapt to their environments.

Epigenomic modifications alter gene expression without changing the letters of the DNA alphabet (A-T-C-G), providing cells with an additional tool to fine-tune how genes control the cellular machinery. These changes occur not only in plants, but in humans as well.

"We looked at plants collected from around the world and found that their epigenomes are surprisingly different," says senior author Joseph R. Ecker, a professor in Salk's Plant Biology Laboratory and holder of the Salk International Council Chair in Genetics. "This additional diversity may create a way for plants to rapidly adapt to diverse environments without any genetic change in their DNA, which takes a very long time."

By understanding epigenomic alterations in plants, scientists may be able to manipulate them for various purposes, including biofuels and creating crops that can withstand stressful events such as drought. That knowledge of epigenomic changes in crop plants could tell producers what to breed for and could have a huge impact on identifying plants that can survive certain conditions and adapt to environmental stressors, says Ecker, who is also a Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator.

Using MethylC-Seq, a method for mapping epigenomic changes developed by Ecker, the researchers analyzed methylation patterns from a population of Arabidopsis thaliana, a modest mustard weed that has become to plant biology what laboratory mice are to animal biology. The plants were from a variety of climates in the Northern Hemisphere, from Europe to Asia and Sweden to the Cape Verde Islands. Ecker's team examined the genomes and methylomes of A. thaliana, the makeup of their entire genetic and epigenomic codes, respectively, which is the first step toward understanding the impact of epigenetic changes on the plants' physical characteristics and ability to adapt to their environment.

"We expected variation in methylation patterns among groups of plants from around the globe," says co-lead author Robert J. Schmitz, a postdoctoral researcher in Ecker's lab. "The amount, however, was far greater than we ever anticipated."

By analyzing these patterns, Ecker's team was able to chart their effects on the activity of genes in the plants' genome. Scientists know that methylation can inactivate genes, but in contrast to DNA mutations, methylation patterns are reversible, giving the plants the ability to temporarily activate genes. The identification of genes that are epigenetically regulated has greatly narrowed the potential candidates important for environmental adaptation.

Methylation silencing also occurs in humansand that has implications for treating cancer, a hallmark of which is the silencing of tumor suppressor genes. "If these genes are turned off by the epigenome, they could potentially be turned back on by removing the DNA methylation," says study co-lead author Matthew Schultz, a graduate student in Ecker's lab. Understanding how these methylation variants form in the wild will help toward better engineering of epigenomes.

Ecker's team will next study how methylation variations affect the traits of plants. They will examine stress-induced epigenomic changes and how they might provide clues as to which alterations are most important for the plants.


'/>"/>

Contact: Andy Hoang
AHoang@salk.edu
619-861-5811
Salk Institute
Source:Eurekalert  

Related biology news :

1. Microbiologists eavesdrop on the hidden lives of microbes
2. Immune system molecule with hidden talents
3. MBL scientists to explore hidden realm of microbes, viruses beneath the ocean floor
4. Hidden secrets in the worlds most northerly rainforests
5. Blowing in the wind: How hidden flower features are crucial for bees
6. Elephant seal tracking reveals hidden lives of deep-diving animals
7. First satellite tag study for manta rays reveals habits and hidden journeys of ocean giants
8. Global Companion Diagnostic Market Worth $19.3 billion by 2023: What it Takes to Become a Major Companion Diagnostic Player
9. Measuring the exertion of mini-basketball players
10. Does the villainous selfish gene undermine genomes police?
11. Sea lamprey genome mapped with help from scientists at OU
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Hidden layer of genome unveils how plants may adapt to environments throughout the world
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
(Date:3/18/2016)... LONDON , March 18, 2016 ... Established Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical ... & security companies in the border security market and ... and Europe has led ... your companies improved success. --> defence & ...
(Date:3/14/2016)... http://www.apimages.com ) - ... - Renvoi : image disponible via AP Images ( ... --> DERMALOG, le leader de l,innovation ... d,empreintes digitales pour l,enregistrement des réfugiés en Allemagne. ... produire des cartes d,identité aux réfugiés. DERMALOG dévoilera ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... ... Intelligent Implant Systems announced today that the two-level components for the Revolution™ Spinal ... These components expand the capabilities of the system and allow Revolution™ to be ... 2015, the company has seen significant sales growth in 1Q 2016, and the system ...
(Date:4/28/2016)... ... April 28, 2016 , ... Next ... a talk on its first-in-class technologies for tissue stem cell counting and expansion ... RNAiMicroRNA Biology to Reprogramming & CRISPR-based Genome Engineering in Burlington, Massachusetts. , The ...
(Date:4/27/2016)... (PRWEB) , ... April 27, 2016 , ... The Pittcon ... Pittcon 2019. Chuck has been a volunteer member of Committee since 1987. Since ... the board of directors and treasurer and was chairman for both the program and ...
(Date:4/27/2016)... , ... April 27, 2016 , ... ... Jon Clark has joined the company as an Expert Consultant. Mr. Clark ... industry collaborations and managing the development of small molecule monographs based on analytical ...
Breaking Biology Technology: