Navigation Links
Herpes-loaded stem cells used to kill brain tumors
Date:5/16/2014

Harvard Stem Cell Institute (HSCI) scientists at Massachusetts General Hospital have a potential solution for how to more effectively kill tumor cells using cancer-killing viruses. The investigators report that trapping virus-loaded stem cells in a gel and applying them to tumors significantly improved survival in mice with glioblastoma multiforme, the most common brain tumor in human adults and also the most difficult to treat.

The work, led by Khalid Shah, MS, PhD, an HSCI Principal Faculty member, is published in the Journal of the National Cancer Institute. Shah heads the Molecular Neurotherapy and Imaging Laboratory at Massachusetts General Hospital.

Cancer-killing or oncolytic viruses have been used in numerous phase 1 and 2 clinical trials for brain tumors but with limited success. In preclinical studies, oncolytic herpes simplex viruses seemed especially promising, as they naturally infect dividing brain cells. However, the therapy hasn't translated as well for human patients. The problem previous researchers couldn't overcome was how to keep the herpes viruses at the tumor site long enough to work.

Shah and his team turned to mesenchymal stem cells (MSCs)a type of stem cell that gives rise to bone marrow tissuewhich have been very attractive drug delivery vehicles because they trigger a minimal immune response and can be utilized to carry oncolytic viruses. Shah and his team loaded the herpes virus into human MSCs and injected the cells into glioblastoma tumors developed in mice. Using multiple imaging markers, it was possible to watch the virus as it passed from the stem cells to the first layer of brain tumor cells and subsequently into all of the tumor cells.

"So, how do you translate this into the clinic?" asked Shah, who also is an Associate Professor at Harvard Medical School.

"We know that 70-75 percent of glioblastoma patients undergo surgery for tumor debulking, and we have previously shown that MSCs encapsulated in biocompatible gels can be used as therapeutic agents in a mouse model that mimics this debulking," he continued. "So, we loaded MSCs with oncolytic herpes virus and encapsulated these cells in biocompatible gels and applied the gels directly onto the adjacent tissue after debulking. We then compared the efficacy of virus-loaded, encapsulated MSCs versus direct injection of the virus into the cavity of the debulked tumors."

Using imaging proteins to watch in real time how the virus combated the cancer, Shah's team noticed that the gel kept the stem cells alive longer, which allowed the virus to replicate and kill any residual cancer cells that were not cut out during the debulking surgery. This translated into a higher survival rate for mice that received the gel-encapsulated stem cells.

"They survived because the virus doesn't get washed out by the cerebrospinal fluid that fills the cavity," Shah said. "Previous studies that have injected the virus directly into the resection cavity did not follow the fate of the virus in the cavity. However, our imaging and side-by-side comparison studies showed that the naked virus rarely infects the residual tumor cells. This could give us insight into why the results from clinical trials with oncolytic viruses alone were modest."

The study also addressed another weakness of cancer-killing viruses, which is that not all brain tumors are susceptible to the therapy. The researchers' solution was to engineer oncolytic herpes viruses to express an additional tumor-killing agent, called TRAIL. Again, using mouse models of glioblastomathis time created from brain tumor cells that were resistant to the herpes virusthe therapy led to increased animal survival.

"Our approach can overcome problems associated with current clinical procedures," Shah said. "The work will have direct implications for designing clinical trials using oncolytic viruses, not only for brain tumors, but for other solid tumors."

Further preclinical work will be needed to use the herpes-loaded stem cells for breast, lung and skin cancer tumors that metastasize to the brain. Shah predicts the approach will enter clinical trials within the next two to three years.


'/>"/>

Contact: Joseph Caputo
joseph_caputo@harvard.edu
617-496-1491
Harvard University
Source:Eurekalert  

Related biology news :

1. Tortoise and the hare: New drug stops rushing cancer cells, slow and steady healthy cells unharmed
2. Stem cells can repair a damaged cornea
3. Scientists produce eye structures from human blood-derived stem cells
4. Study demonstrates cells can acquire new functions through transcriptional regulatory network
5. Epigenetic signatures direct the repair potential of reprogrammed cells
6. Researchers print live cells with a standard inkjet printer
7. Nanopills release drugs directly from the inside of cells
8. Protein jailbreak helps breast cancer cells live
9. Newly found protein helps cells build tissues
10. BU researchers derive purified lung and thyroid progenitors from embryonic stem cells
11. Housekeeping mechanism for brain stem cells discovered
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Herpes-loaded stem cells used to kill brain tumors
(Date:12/16/2016)... --  IdentyTechSolutions America LLC , a leading provider ... a cutting-edge manufacturer of software and hardware security ... integrated solutions that comprise IDT biometric readers and ... IdentyTech,s customers with combined physical identification and anti-tailgating ... theft. "We are proud to use ...
(Date:12/15/2016)... -- ... Research and Markets has announced the addition of the "Global Military ... report forecasts the global military biometrics market to grow at a CAGR ... been prepared based on an in-depth market analysis with inputs from industry ... the coming years. The report also includes a discussion of the key ...
(Date:12/8/2016)... Dec. 8, 2016 Market Research Future published a half ... global Mobile Biometric Security and Service Market is expected to grow ... Market Highlights: ... , Mobile Biometric Security and ... the increasing need of authentication and security from unwanted cyber threats. ...
Breaking Biology News(10 mins):
(Date:1/24/2017)... (PRWEB) , ... January 24, 2017 , ... ... waist circumference, and increased serum leptin levels had a positive association with increased ... The study published in the International Neurourology Journal involved 571 Korean men ...
(Date:1/24/2017)... & Geneva, Switerland (PRWEB) , ... January 24, ... ... announce the first commercially available malaria Plasmodium falciparum culture panels with standard concentrations ... culture panels, which are available in a range of concentrations from six different ...
(Date:1/24/2017)... LAVAL, QC , Jan. 24, 2017 /PRNewswire/ - ProMetic ... the "Corporation") announced today that its orally active lead ... Medicine ("PIM") designation by the UK Medicines and Healthcare ... Syndrome ("AS"). A PIM designation is ... promising candidate for the Early Access to Medicines Scheme ...
(Date:1/24/2017)... ... 23, 2017 , ... Edward Buckler, Ph.D., a research geneticist ... Academy of Sciences Prize in Food and Agriculture Sciences. He is being honored ... Academy of Sciences (NAS) Prize in Food and Agriculture Sciences was established in ...
Breaking Biology Technology: