Navigation Links
Helping the brain's messengers get from A to B
Date:6/10/2010

NEW YORK (June 10, 2010) -- In what has been hailed as a breakthrough, scientists from Columbia University Medical Center and Weill Cornell Medical College have outlined the molecular mechanism of membrane transport. The research shows how a protein transforms its shape to transport substances across the cell membrane in order to regulate transmission of the brain's messages across the synaptic gap from one neuron to another.

Because widely used medications for depression modulate this transport process by binding to the transporters, the new findings help explain how the medications work, and the way in which stimulants like cocaine and amphetamine produce their effects. This new understanding should also prove useful in the development of more targeted medication therapies for anxiety, depression, schizophrenia and substance abuse.

The researchers looked at transporter proteins in the family of Na+ symporters, which remove neurotransmitters from the synapse in a process called reuptake that is essential to the proper function of neural transmission. Antidepressants such as Prozac and Zoloft, which are selective serotonin reuptake inhibitors (SSRIs), and cocaine interfere with the reuptake mechanism and alter the normal exchange process between cells.

The paper describing the new findings was published in the May 13 issue of Nature and was lauded as a significant contribution to the understanding of the dynamics of the transport cycle in the journal's News & Views section. The reviewers note that until now biologists have been unable to view transporters on a single-molecule detail, but the new research "lifts the curtain and shines a spotlight onto some of the choreography" of membrane transport. In this spotlight, the new research illuminates the pathway of transported molecules revealing how transporter proteins escort ions and molecules through membranes by forming passageways in a manner the researchers liken to gates opening and closing.

"The study of membrane transport proteins and the genes that encode them offers the opportunity to investigate many aspects of disease processes. The opening and closing of the transporter 'gates' is orchestrated by binding of the transported substances and by inhibitory drugs in ways that could not be determined by previous approaches that were unable to resolve movements in individual proteins," says one senior author, Dr. Jonathan Javitch, who is the Lieber Professor of Experimental Therapeutics in the Departments of Psychiatry and Pharmacology and the Center for Molecular Recognition at Columbia University Medical Center.

Exactly how the gates open and close, and why, is not yet fully understood; however, the results from this research are an important step in that direction.

"Advances in technology have enabled cell biologists to see molecular processes at a level of detail that was not possible even in the last decade. Just as the Hubble telescope and computer-assisted tomography have allowed scientists to view objects in outer space and inside the body more clearly and in greater detail, biologists now have new tools to view what is happening at the cellular level and powerful computational methods to mimic these processes in the computer. This research has brought both advances to bear on a fundamental problem in neural transmission," says study co-author Dr. Harel Weinstein, chairman and Maxwell M. Upson Professor of Physiology and Biophysics, and director of the Institute for Computational Biomedicine (ICB) at Weill Cornell Medical College.

Dr. Weinstein credits the work of his colleague Dr. Scott Blanchard, associate professor of physiology and biophysics at Weill Cornell Medical College, in providing the expertise in a new technology that is crucial to this research. Dr. Blanchard and his team developed this new technology over numerous years and it is now at a place where functional motions of individual proteins can be directly visualized in nearly real time.

"Understanding molecular movements is important because enzyme functions hinge on motion," says Dr. Blanchard, another senior author of the new study. "To observe molecules, we attach reporter molecules called fluorophores that can be directly measured at the single-molecule scale. In so doing, motional information can be obtained about the protein to which they are linked."

In the current study, the investigators used this technique to study the LeuT transporter. They were able to monitor changes of individual molecules and reported observing two distinct states which they believe report on the open and closed states of the gating mechanism.

Dr. Weinstein notes that SSRIs were developed without a real understanding of how they work and only now researchers are beginning to understand how they bind and affect the transporters. "These medications are effective in treating many mental illnesses, including depression, obsessive-compulsive disorder and panic disorder, suggesting that these disorders have some relation to serotonin levels in the brain. Our study is the start of understanding how SSRIs work at a mechanistic level, and why they work in some people and not in others."


'/>"/>

Contact: Andrew Klein
ank2017@med.cornell.edu
212-821-0560
New York- Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College
Source:Eurekalert

Related biology news :

1. New psychological intervention program shows promise in helping those with bowel diseases
2. Helping hearts, spinal cords and tendons heal themselves
3. Helping the NRC look below the surface
4. New insights into helping marine species cope with climate change
5. Texas AgriLife researchers helping
6. Tennessee foresters helping to return chestnuts to American forests
7. Energy experts helping Australian households reduce carbon emissions
8. Green IT not helping climate change
9. Satellites helping aid workers in Honduras
10. Researcher helping to pioneer medical therapy for Fragile X Syndrome presents latest findings
11. Giving nature a helping hand
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... --  EyeLock LLC , a market leader of iris-based ... IoT Center of Excellence in Austin, Texas ... embedded iris biometric applications. EyeLock,s iris authentication ... with unmatched biometric accuracy, making it the most proven ... platform uses video technology to deliver a fast and ...
(Date:4/28/2016)... , April 28, 2016 Infosys ... (NYSE: INFY ), and Samsung SDS, a global ... that will provide end customers with a more secure, fast ...      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... but it also plays a fundamental part in enabling and ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Liquid Biotech USA ... a Sponsored Research Agreement with The University of ... from cancer patients.  The funding will be used ... with clinical outcomes in cancer patients undergoing a ... be employed to support the design of a ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
Breaking Biology Technology: