Navigation Links
Help from the dark side

This release is available in German.

Spectroscopic techniques are among the most important methods by which scientists can look inside materials. They exploit the interaction of light waves with a given sample.

Now, using X-ray absorption spectroscopy, researchers from Helmholtz-Zentrum Berlin fr Materialien und Energie (HZB) have observed the moving of electric charges from solute to solvent so-called electron transfer. They can even make assertions on the temporal sequence of this process. As one example, they can find out how solute biochemical substances carry out their microscopic functions in their natural environment at room temperature and normal pressure. Until recently, studying such systems by soft X-ray radiation has not been possible. The HZB group led by Emad Aziz reports on this in Nature Chemistry (DOI: 10.1038/NCHEM.768), with their article highlighted in the online pre-issue from 8 August.

The group studied the X-ray absorption spectra of iron ions in both iron chloride and organic compounds such as haemin, the active centre of blood component haemoglobin, and analyzed the hitherto inexplicable negative peak (dip) in the spectra.

In X-ray absorption spectroscopy, monochromatic X-ray light interacts with the sample. When the energy of the incident light exactly matches the energy transfer in the molecule, electrons can be excited out of their ground state into a higher energy state. As they return to their original state, the added energy is released again, as an emission of fluorescent light for example. By recording this fluorescent light, scientists gain an insight into the electron orbital configuration of atoms and molecules.

By making measurements using synchrotron light at the X-ray source BESSY II, Emad Aziz and his colleagues discovered that certain solute substances emit no fluorescent light after excitation. The negative peak that appeared in the spectrum was evidence that the return to ground state took place without radia-tion, through a so-called "dark channel".

This happens because interactions between molecules in the sample and in the solvent produce common orbitals. The excited electrons are pushed into these orbitals. "This works because the molecular orbitals of the iron and water ions come very close spatially and their energies match very well," explains Emad Aziz, head of a junior research group at HZB. The electrons remain in this new state longer than they would in a normal molecular orbital. Their energy state therefore prevents the emission of the normally expected fluorescent light.

Dips in the spectrum thus give a clue as to the kind of interplay between the sample and the solvent. One could use this process to examine how much the solvent contributes towards the function of biochemical systems such as pro-teins, for example.

Ultrafast processes such as charge transfer have only been observable with enormous effort using conventional methods. Now, HZB researchers have found a way to explain the dynamics of this process using a simple model. "We can observe where the charges migrate to, and we can see that this happens within a few femtoseconds," Emad Aziz stresses. The result also has major repercus-sions for the interpretation of X-ray absorption spectra in general.

For their experiments, the group used a specially developed flow cell that also allows them to study biological samples by X-ray in their natural environment that is in dissolved form.


Contact: Dr. Emad Flear Aziz Bekhit
Helmholtz Association of German Research Centres

Post Your Comments:
(Date:5/23/2017)... first robotic gym for the rehabilitation and functional motor sense evaluation of ... Italy . The first 30 robots will be available from June ... . The technology was developed and patented at the IIT laboratories and ... thanks to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, a ... authentication solutions, today announced that it has been ... Research Projects Activity (IARPA) to develop next-generation Presentation ... "Innovation has been a driving force ... program will allow us to innovate and develop ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... At its national board meeting ... I. Sheikh, the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space ... membership in ARCS Alumni Hall of Fame . ASTER Labs is a ...
(Date:10/11/2017)... 2017  VMS BioMarketing, a leading provider of patient support ... Nurse Educator (CNE) network, which will launch this week. The ... health care professionals to enhance the patient care experience by ... other health care professionals to help women who have been ... ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... CRUZ, Calif. , Oct. 10, 2017 ... grant from the NIH to develop RealSeq®-SC (Single Cell), ... kit for profiling small RNAs (including microRNAs) from single ... Analysis Program highlights the need to accelerate development of ... "New techniques for measuring ...
Breaking Biology Technology: