Navigation Links
Hebrew University student turns paper mill waste into 'green' material for industrial applications
Date:8/1/2011

Jerusalem, August 1, 2011 A method to use paper mill waste to produce ecologically friendly, industrial foams from renewable resources has been developed by a graduate student in agriculture at the Hebrew University of Jerusalem.

Foams are used for numerous day-to-day uses, including in the manufacture of furniture and car interiors. In many composite material applications, they are used as core material in "sandwich" panels to achieve high strength, weight reduction, energy dissipation and insulation. Conventional foams are produced from polymers such as polyurethane, polystyrene, polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Since all of these current foams rely on fossil oil, they present a clear environmental disadvantage.

Shaul Lapidot, a Ph.D. student of Prof. Oded Shoseyov, along with his laboratory colleagues at the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University in Rehovot, has formulated a procedure for production of nano-crystalline cellulose (NCC) from paper mill waste. NCC is further processed into composite foams for applications in the composite materials industry as bio-based replacement for synthetic foams.

The process of paper production involves loss of all fibers with dimensions lower than the forming fabric mesh. Consequently around 50% of the total fibers initially produced are washed away as sludge. In Europe alone, 11 million tons of waste are produced annually by this industry, creating an incentive for finding alternative uses and different applications for the wastes.

Lapidot has found that fibers from paper mill sludge are a perfect source for NCC production due to their small dimensions which require relatively low energy and chemical input in order to process them into NCC. He also developed the application of NCC into nano-structured foams. This is further processed into composite foams for applications in the composite materials industry to be used as bio-based replacement for synthetic foams.

NCC foams that Lapidot and his colleagues have recently developed are highly porous and lightweight. Additional strengthening of the foams was enabled by infiltration of furan resin, a hemicellulose-based resin produced from raw crop waste, such as that remaining from sugar cane processing, as well as oat hulls, corn cobs and rice hulls.

The new NCC reinforced foams display technical performance which matches current high-end synthetic foams. The technology was recently licensed from Yissum, the technology transfer company of the Hebrew University, by Melodea Ltd., an Israeli-Swedish start-up company which aims to develop it for industrial scale production.

Lapidot's development has led to his being awarded one of the Barenholz Prizes that were presented on June 21 at the Hebrew University Board of Governors meeting. The award is named for its donor, Prof. Yehezkel Barenholz of the Hebrew University-Hadassah Medical School.


'/>"/>

Contact: Jerry Barach
jerryb@savion.huji.ac.il
972-258-82904
The Hebrew University of Jerusalem
Source:Eurekalert  

Related biology news :

1. Hebrew U. scientists show for first time how early human embryo acquires its shape
2. Research teams at Hebrew University, University of Kentucky win Israel-US science award
3. Two Hebrew University professors win prestigious Canadian medical science award
4. Researchers from Hebrew U., US discover how mercury gets into fish we eat
5. Climate change threatens many tree species, say Hebrew U. researchers
6. Hebrew University research carries cautionary warning for future stem cell applications
7. Unlike us, honeybees naturally make quick switch in their biological clocks, says Hebrew University researcher
8. Hebrew University research holds promise for development of new osteoporosis drug
9. How algae enslavement threatens freshwater bodies described by Hebrew University researcher
10. Hebrew University researchers identify gene related to chronic pain
11. Research on stem cells wins first prize for Hebrew University researcher
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Hebrew University student turns paper mill waste into 'green' material for industrial applications 
(Date:3/27/2017)... ROCKVILLE CENTRE, N.Y. , March 27, 2017 ... by Healthcare Information and Management Systems Society (HIMSS) ... Analytics Outpatient EMR Adoption Model sm . In ... top 12% of U.S. hospitals using an electronic ... recognized CHS for its high level of EMR ...
(Date:3/22/2017)... VILNIUS, Lithuania , March 21, 2017 /PRNewswire/ ... identification and object recognition technologies, today announced the ... development kit (SDK), which provides improved facial recognition ... safety cameras on a single computer. The new ... algorithms to improve accuracy, and it utilizes a ...
(Date:3/16/2017)... Germany , March 16, 2017 CeBIT 2017 - Against identity ... Continue Reading ... Used combined in one project, multi-biometric solutions provide ... Used ... Systems) ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... , ... May 23, 2017 , ... Bacterial biofilms, surface ... molecules, can cause diverse pathologies ranging from food poisoning and catheter infections to gum ... is in the tens of billions of dollars per year, there is currently a ...
(Date:5/22/2017)... , ... May 22, 2017 , ... Stratevi, a boutique ... to the East Coast. It has opened an office in downtown Boston at 745 ... finding it increasingly more important to generate evidence on the value they provide, not ...
(Date:5/21/2017)... LOS ANGELES, CA (PRWEB) , ... May 19, ... ... at the annual meeting and educational conference of the American Association of Bioanalysts ... at the Galleria Hotel in Houston. The conference reinforces AAB’s commitment to excellence ...
(Date:5/19/2017)... ... May 19, 2017 , ... The University ... researchers with technologies ripe for commercialization, and who are affiliated with the 21 ... to submit proposals. QED, now in its tenth round, is the first multi-institutional ...
Breaking Biology Technology: