Navigation Links
Hebrew University scientists reveal mechanism that triggers differentiation of embryo cells
Date:12/22/2008

Jerusalem, December 21, 2008 The mechanism whereby embryonic cells stop being flexible and turn into more mature cells that can develop into specific tissues has been discovered by scientists at the Hebrew University of Jerusalem. The discovery has significant consequences towards furthering research that will eventually make possible medical cell replacement therapy based on the use of embryonic cells.

At a very early stage of human development, all cells of the embryo are identical, but unlike adult cells are very flexible and carry within them the potential to become any tissue type, whether it be muscle, skin, liver or brain.

This cell differentiation process begins at about the time that the embryo settles into the uterus. In terms of the inner workings of the cell, this involves two main control mechanisms. On the one hand, the genes that keep the embryo in their fully potent state are turned off, and at the same time, tissue-specific genes are turned on. By activating a certain set of genes, the embryo can make muscle cells. By turning on a different set, these same immature cells can become liver. Other gene sets are responsible for additional tissues.

In a recent paper, published in the journal, Nature Structural and Molecular Biology, Professors Yehudit Bergman and Howard Cedar of the Hebrew University-Hadassah Medical School have deciphered the mechanism whereby embryonic cells stop being flexible and turn into more mature cells that can differentiate into specific tissues. Bergman is the Morley Goldblatt Professor of Cancer Research and Experimental Medicine and Cedar is the Harry and Helen L. Brenner Professor of Molecular Biology at the Medical School.

They found in their experiments, using embryos from laboratory mice and cells that grow in culture, that this entire process is actually controlled by a single gene, called G9a, which itself is capable of directing a whole program of changes that involves turning off a large set of genes so that they remain locked for the entire lifetime of the organism, thereby unable to activate any further cell flexibility.

Their studies shed light not only on this central process, but also can have consequences for medical treatment. One of the biggest challenges today is to generate new tissues for replacing damaged cells in a variety of different diseases, such as Parkinson's disease or diabetes. Many efforts have been aimed at "reprogramming" readily-available adult cells, but scientists have discovered that it is almost impossible to do this, mainly because normal tissues are locked in their fixed program and have lost their ability to convert back to fully potent, flexible, embryonic cells.

Now, with the new information discovered by Bergman and Cedar, the molecular program that is responsible for turning off cell flexibility has been identified, and this may clear the way towards developing new approaches to program cells in a controlled and specific manner.


'/>"/>

Contact: Jerry Barach
jerryb@savion.huji.ac.il
972-258-82904
The Hebrew University of Jerusalem
Source:Eurekalert

Related biology news :

1. Scent on demand: Hebrew University scientists enhance the scent of flowers
2. Hebrew University develops novel approach for treating mitochondrial disorders
3. Hebrew University study opening new route for combating viruses
4. Electronic structure of DNA revealed for 1st time by Hebrew University and collaborating researchers
5. Five young Hebrew University scientists win first competitive EU grants
6. Hebrew SeniorLife researchers search for aging, osteoporosis genes
7. Antioxidant to retard wrinkles discovered by Hebrew University researcher
8. Tufts University Prof. Maria Flytzani-Stephanopoulos named as AAAS Fellow
9. University of Miami biomedical engineer
10. Hobbit fossils represent a new species, concludes University of Minnesota anthropologist
11. Columbia University scientist devises new way to more rapidly generate bone tissue
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based ... to 2022", published by MarketsandMarkets, the market is expected to be worth USD ... 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology: