Navigation Links
Hebrew University, American researchers show 'trigger' to stem cell differentiation

Jerusalem A gene which is essential for stem cells' capabilities to become any cell type has been identified by researchers at the Hebrew University of Jerusalem and the University of California, San Francisco.

The discovery represents a further step in the ever-expanding field of understanding the ways in which stem cells develop into specific cells, a necessary prelude towards the use of stem cell therapy as a means to reverse the consequences of disease and disability.

The identification of the gene, known as Chd1, was made by Dr. Eran Meshorer of the Alexander Silberman Institute of Life Sciences at the Hebrew University and Dr. Miguel Ramalho-Santos (UCSF), together with their graduate students Adi Alajem (the Hebrew University) and Alexandre Gaspar-Maia (UCSF).

Embryonic stem (ES) cells, which are primary cells derived from the early developing embryo, are capable of giving rise, according to their environment and conditions, to any cell type -- a trait known as pluripotency.

It was assumed that the ES cells have a relatively high degree of open chromatin, which is thought to enable their pluripotency, a theory which awaited proof. Chromatin, which is found in all cells, is composed of DNA and its surrounding proteins and can be found in one of two conformations: closed chromatin (heterochromatin) when the genetic material is packed in a way that prevents the expression of the genes -- and open chromatin (euchromatin) when chromatin is accessible to the gene expression machinery. Different cells display varying degrees of open and closed chromatin as a function of the genes required for their function.

In their current study, which was published recently in Nature magazine, the researchers from the Hebrew University and UCSF showed, using mouse ES cells, that Chd1 regulates open chromatin in ES cells. The open chromatin conformation, maintained by Chd1, enabled the expression of a wide variety of genes, leading to proper differentiation into all types of specific cells. Depletion of Chd1 in embryonic stem cells led to formation of heterochromatin (closed chromatin) and prevented the ability of the cells to generate all types of tissues.

The study, therefore, showed a proven link between open chromatin in ES cells and their pluripotency an important finding on the road to the implementation of stem cell applications in future medical treatment.


Contact: Jerry Barach
The Hebrew University of Jerusalem

Related biology news :

1. Antioxidant to retard wrinkles discovered by Hebrew University researcher
2. Hebrew SeniorLife researchers search for aging, osteoporosis genes
3. Five young Hebrew University scientists win first competitive EU grants
4. Electronic structure of DNA revealed for 1st time by Hebrew University and collaborating researchers
5. Hebrew University study opening new route for combating viruses
6. Hebrew University develops novel approach for treating mitochondrial disorders
7. Scent on demand: Hebrew University scientists enhance the scent of flowers
8. Hebrew University scientists reveal mechanism that triggers differentiation of embryo cells
9. Hebrew University professors work leads to FDA approval for product
10. Hebrew University researchers neutralize tumor growth in embryonic stem cell therapy
11. Promising new treatment for Alzheimers suggested based on Hebrew University research
Post Your Comments:
Related Image:
Hebrew University, American researchers show 'trigger' to stem cell differentiation
(Date:10/29/2015)... 2015  Rubicon Genomics, Inc., today announced an ... its DNA library preparation products, including the ThruPLEX ... Plasma-seq kit. ThruPLEX Plasma-seq has been optimized for ... libraries for liquid biopsies--the analysis of cell-free circulating ... in cancer and other conditions. Eurofins Scientific is ...
(Date:10/29/2015)... Oct. 29, 2015 Today, LifeBEAM ... partnership with 2XU, a global leader in technical ... smart hat with advanced bio-sensing technology. The hat ... to monitor key biometrics to improve overall training ... the two companies will bring together the most advanced ...
(Date:10/27/2015)... 2015 Synaptics Inc. (NASDAQ: SYNA ), the ... has adopted the Synaptics ® ClearPad ® ... its newest flagship smartphones, the Nexus 5X by LG ... --> --> Synaptics works closely ... collaboration in the joint development of next generation technologies. ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ... New York on Wednesday, December 2 at ... , president and CEO, will provide a corporate overview. ... at 1:00 p.m. ET/10:00 a.m. PT . ... will provide a corporate overview. --> th Annual ...
(Date:11/24/2015)... -- Clintrax Global, Inc., a worldwide provider of clinical research services headquartered ... the company has set a new quarterly earnings record in Q3 ... posted for Q3 of 2014 to Q3 of 2015.   ... , with the establishment of an Asia-Pacific ... United Kingdom and Mexico , with ...
(Date:11/24/2015)... , November 24, 2015 ... market research report released by Transparency Market Research, the ... at a CAGR of 17.5% during the period between ... Market - Global Industry Analysis, Size, Volume, Share, Growth, ... non-invasive prenatal testing market to reach a valuation of ...
(Date:11/24/2015)... ... ... InSphero AG, the leading supplier of easy-to-use solutions for production, culture, and ... as Chief Operating Officer. , Having joined InSphero in November 2013 as ... promoted to Head of InSphero Diagnostics in 2014. There she has built up ...
Breaking Biology Technology: