Navigation Links
Healing times for dental implants could be cut
Date:6/14/2011

The technology used to replace lost teeth with titanium dental implants could be improved. By studying the surface structure of dental implants not only at micro level but also at nano level, researchers at the University of Gothenburg; Sweden, have come up with a method that could shorten the healing time for patients.

"Increasing the active surface at nano level and changing the conductivity of the implant allows us to affect the body's own biomechanics and speed up the healing of the implant," says Johanna Lberg at the University of Gothenburg's Department of Chemistry. "This would reduce the discomfort for patients and makes for a better quality of life during the healing process."

Dental implants have been used to replace lost teeth for more than 40 years now. Per-Ingvar Brnemark, who was recently awarded the prestigious European Inventor Award, was the first person to realise that titanium was very body-friendly and could be implanted into bone without being rejected. Titanium is covered with a thin layer of naturally formed oxide and it is this oxide's properties that determine how well an implant fuses with the bone.

It became clear at an early point that a rough surface was better than a smooth one, and the surface of today's implants is often characterised by different levels of roughness, from the thread to the superimposed nanostructures. Anchoring the implant in the bone exerts a mechanical influence on the bone tissue known as biomechanical stimulation, and this facilitates the formation of new bone. As the topography (roughness) of the surface is important for the formation of new bone, it is essential to be able to measure and describe the surface appearance in detail. But roughness is not the only property that affects healing.

Johanna Lberg has come up with a method that describes the implant's topography from micrometre to nanometre scale and allows theoretical estimations of anchoring in the bone by different surface topographies. The method can be used in the development of new dental implants to optimise the properties for increased bone formation and healing. She has also studied the oxide's conductivity, and the results show that a slightly higher conductivity results in a better cell response and earlier deposition of minerals that are important for bone formation.

The results are in line with animal studies and clinical trials of the commercial implant OsseoSpeed (Astra Tech AB), which show a slightly higher conductivity for the oxide and also an exchange between hydroxide and fluoride on the surface of the oxide. Surfaces with a well-defined nanostructure have a larger active area and respond quickly to the deposition of bone-forming minerals.

The project is a collaboration between the University of Gothenburg and Astra Tech AB in Mlndal, and will be further evaluated in follow-up studies.


'/>"/>

Contact: Johanna Lberg
Johanna.Loberg@chem.gu.se
46-070-555-4787
University of Gothenburg
Source:Eurekalert  

Related biology news :

1. Closing the gap: Journal launch brings together wound-healing knowledge
2. Stem cell focus for IBD wound healing
3. Advancement in tissue engineering promotes oral wound healing
4. Shellfish and inkjet printers may hold key to faster healing from surgeries
5. Research yields potential target for cancer, wound healing and fibrosis
6. Healing wounds with lasers, vehicles that drive themselves, other cutting-edge optics
7. Healing power of aloe vera proves beneficial for teeth and gums, too
8. Nanodiamonds deliver insulin for wound healing
9. The hepatitis healing power of blueberry leaves
10. Healing haze: Substances in smoke left over from forest fires speed plant growth
11. The healing effects of forests
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Healing times for dental implants could be cut
(Date:12/7/2016)... According to a new market research report "Emotion Detection ... Voice Recognition), Service, Application Area, End User, And Region - Global Forecast to ... 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a Compound ... ... MarketsandMarkets Logo ...
(Date:12/7/2016)...   Veridium , a leader in biometrics-based ... CEO James Stickland . Stickland, a seasoned ... has served in senior executive roles for HSBC, ... expanding a pipeline of venture capital and accelerating ... served as managing director of U.K.-based fintech firm ...
(Date:12/6/2016)... Securus Technologies, a leading provider of ... safety, investigation, corrections and monitoring, and the Prison ... (5) year funding commitment by Securus to PEP ... and reentry support to more inmates and their ... the Prison Entrepreneurship Program (PEP) is an independent ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... York , December 9, 2016 ... that the top five players in the  Global Label-Free ... in the overall market in 2015. Players such as ... Elmer have remained dominant in the global market due ... to ensure product innovation. Product upgrades and timely product ...
(Date:12/8/2016)... Dec. 8, 2016  The Board of Directors of ... Western Pennsylvania,s only pure life sciences ... accordance with the succession plan developed by the Nominating ... today, James (Jim) F. Jordan is selected ... John W. Manzetti , who is elected to ...
(Date:12/8/2016)... , December 8, 2016 AskLinkerReports.com has ... analysis, titled Global Amyloglucosidase Industry 2016 Market Research Report. From ... and industry chain overview are all covered in the report. ... and investment return analysis of the Amyloglucosidase industry. ... , , ...
(Date:12/8/2016)... ... 08, 2016 , ... Opal Kelly, a leading producer of ... USB or PCI Express, announced the FOMD-ACV-A4, the company's first FPGA-on-Module for integration ... SODIMM-style module that fits a standard 204-pin SODIMM socket for low-cost integrations and ...
Breaking Biology Technology: